These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 35355451

  • 1. Computational Inference of Synaptic Polarities in Neuronal Networks.
    Harris MR, Wytock TP, Kovács IA.
    Adv Sci (Weinh); 2022 May; 9(16):e2104906. PubMed ID: 35355451
    [Abstract] [Full Text] [Related]

  • 2. Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network.
    Fenyves BG, Szilágyi GS, Vassy Z, Sőti C, Csermely P.
    PLoS Comput Biol; 2020 Dec; 16(12):e1007974. PubMed ID: 33347479
    [Abstract] [Full Text] [Related]

  • 3. The neuropeptidergic connectome of C. elegans.
    Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR.
    Neuron; 2023 Nov 15; 111(22):3570-3589.e5. PubMed ID: 37935195
    [Abstract] [Full Text] [Related]

  • 4. Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost.
    Rakowski F, Karbowski J.
    PLoS Comput Biol; 2017 Nov 15; 13(11):e1005834. PubMed ID: 29155814
    [Abstract] [Full Text] [Related]

  • 5. Statistical analysis of unidirectional and reciprocal chemical connections in the C. elegans connectome.
    Wright EAP, Goltsev AV.
    Eur J Neurosci; 2020 Dec 15; 52(11):4525-4535. PubMed ID: 33022789
    [Abstract] [Full Text] [Related]

  • 6. Uncovering the genetic blueprint of the C. elegans nervous system.
    Kovács IA, Barabási DL, Barabási AL.
    Proc Natl Acad Sci U S A; 2020 Dec 29; 117(52):33570-33577. PubMed ID: 33318182
    [Abstract] [Full Text] [Related]

  • 7. Primary visual cortex shows laminar-specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity.
    Xu X, Olivas ND, Ikrar T, Peng T, Holmes TC, Nie Q, Shi Y.
    J Physiol; 2016 Apr 01; 594(7):1891-910. PubMed ID: 26844927
    [Abstract] [Full Text] [Related]

  • 8. Deciphering the genetic code of neuronal type connectivity through bilinear modeling.
    Qiao M.
    Elife; 2024 Jun 10; 12():. PubMed ID: 38857169
    [Abstract] [Full Text] [Related]

  • 9. From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency.
    Kim JS, Kaiser M.
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct 05; 369(1653):. PubMed ID: 25180307
    [Abstract] [Full Text] [Related]

  • 10. The rich club of the C. elegans neuronal connectome.
    Towlson EK, Vértes PE, Ahnert SE, Schafer WR, Bullmore ET.
    J Neurosci; 2013 Apr 10; 33(15):6380-7. PubMed ID: 23575836
    [Abstract] [Full Text] [Related]

  • 11. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome.
    Kim S, Kim H, Kralik JD, Jeong J.
    PLoS Comput Biol; 2016 Aug 10; 12(8):e1005084. PubMed ID: 27540747
    [Abstract] [Full Text] [Related]

  • 12. A graph network model for neural connection prediction and connection strength estimation.
    Yuan Y, Liu J, Zhao P, Wang W, Gu X, Rong Y, Lai T, Chen Y, Xin K, Niu X, Xiang F, Huo H, Li Z, Fang T.
    J Neural Eng; 2022 May 06; 19(3):. PubMed ID: 35462357
    [Abstract] [Full Text] [Related]

  • 13. Neuronal wiring diagram of an adult brain.
    Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro MA, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GSXE, Seung HS, Murthy M, FlyWire Consortium.
    Nature; 2024 Oct 06; 634(8032):124-138. PubMed ID: 39358518
    [Abstract] [Full Text] [Related]

  • 14. The Multilayer Connectome of Caenorhabditis elegans.
    Bentley B, Branicky R, Barnes CL, Chew YL, Yemini E, Bullmore ET, Vértes PE, Schafer WR.
    PLoS Comput Biol; 2016 Dec 06; 12(12):e1005283. PubMed ID: 27984591
    [Abstract] [Full Text] [Related]

  • 15. Network control principles predict neuron function in the Caenorhabditis elegans connectome.
    Yan G, Vértes PE, Towlson EK, Chew YL, Walker DS, Schafer WR, Barabási AL.
    Nature; 2017 Oct 26; 550(7677):519-523. PubMed ID: 29045391
    [Abstract] [Full Text] [Related]

  • 16. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion.
    Rakowski F, Srinivasan J, Sternberg PW, Karbowski J.
    Front Comput Neurosci; 2013 Oct 26; 7():128. PubMed ID: 24106473
    [Abstract] [Full Text] [Related]

  • 17. Beyond the connectome: how neuromodulators shape neural circuits.
    Bargmann CI.
    Bioessays; 2012 Jun 26; 34(6):458-65. PubMed ID: 22396302
    [Abstract] [Full Text] [Related]

  • 18. Caenorhabditis elegans glutamate transporters influence synaptic function and behavior at sites distant from the synapse.
    Mano I, Straud S, Driscoll M.
    J Biol Chem; 2007 Nov 23; 282(47):34412-9. PubMed ID: 17681948
    [Abstract] [Full Text] [Related]

  • 19. Estimating Sensorimotor Mapping From Stimuli to Behaviors to Infer C. elegans Movements by Neural Transmission Ability Through Connectome Databases.
    Li CW, Lo CC, Chen BS.
    IEEE Trans Neural Netw Learn Syst; 2016 Nov 23; 27(11):2229-2241. PubMed ID: 26415185
    [Abstract] [Full Text] [Related]

  • 20. The synaptic organization in the Caenorhabditis elegans neural network suggests significant local compartmentalized computations.
    Ruach R, Ratner N, Emmons SW, Zaslaver A.
    Proc Natl Acad Sci U S A; 2023 Jan 17; 120(3):e2201699120. PubMed ID: 36630454
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.