These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
283 related items for PubMed ID: 3535882
21. Correlation of enzymatic activities and aggregation state in chicken liver fatty acid synthase. Kashem MA, Hammes GG. Biochim Biophys Acta; 1988 Aug 31; 956(1):39-48. PubMed ID: 3408738 [Abstract] [Full Text] [Related]
22. Orientation of coenzyme A substrates, nicotinamide and active site functional groups in (Di)enoyl-coenzyme A reductases. Fillgrove KL, Anderson VE. Biochemistry; 2000 Jun 13; 39(23):7001-11. PubMed ID: 10841782 [Abstract] [Full Text] [Related]
24. Selective chemical modification of the active sites of the ketoacyl reductase and enoyl reductase of fatty acid synthetase from lactating rat mammary glands. Poulose AJ, Rogers L, Kolattukudy PE. Int J Biochem; 1980 Jun 13; 12(4):591-6. PubMed ID: 6775990 [No Abstract] [Full Text] [Related]
25. Interaction of NADPH-adrenoferredoxin reductase with NADP+ and adrenoferredoxin. Equilibrium and dynamic properties investigated by proton nuclear magnetic resonance. Miura S, Ichikawa Y. J Biol Chem; 1994 Mar 18; 269(11):8001-6. PubMed ID: 8132521 [Abstract] [Full Text] [Related]
26. The involvement of a lysine residue at the active site of the enoyl reductase of pigeon liver fatty acid synthetase. Katiyar SS, Porter JW. Biochem Biophys Res Commun; 1982 Aug 31; 107(4):1219-23. PubMed ID: 6814436 [No Abstract] [Full Text] [Related]
27. Characterization of the inactivation of rat fatty acid synthase by C75: inhibition of partial reactions and protection by substrates. Rendina AR, Cheng D. Biochem J; 2005 Jun 15; 388(Pt 3):895-903. PubMed ID: 15715522 [Abstract] [Full Text] [Related]
28. A mechanism of drug action revealed by structural studies of enoyl reductase. Baldock C, Rafferty JB, Sedelnikova SE, Baker PJ, Stuitje AR, Slabas AR, Hawkes TR, Rice DW. Science; 1996 Dec 20; 274(5295):2107-10. PubMed ID: 8953047 [Abstract] [Full Text] [Related]
29. The architecture of the animal fatty acid synthetase. III. Isolation and characterization of beta-ketoacyl reductase. Wong H, Mattick JS, Wakil SJ. J Biol Chem; 1983 Dec 25; 258(24):15305-11. PubMed ID: 6361031 [Abstract] [Full Text] [Related]
30. Inactivation of enoyl-CoA reductase in pigeon liver fatty acid synthetase by pyridoxal 5'-phosphate: evidence for the presence of one lysine residue at the active site. Mukherjee S, Katiyar SS. J Enzyme Inhib; 1998 Jun 25; 13(3):217-28. PubMed ID: 9629539 [Abstract] [Full Text] [Related]
31. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA. Küssau T, Flipo M, Van Wyk N, Viljoen A, Olieric V, Kremer L, Blaise M. Acta Crystallogr D Struct Biol; 2018 May 01; 74(Pt 5):383-393. PubMed ID: 29717709 [Abstract] [Full Text] [Related]
32. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G, Krishna TS, Williams CH, Kuriyan J. J Mol Biol; 1994 Feb 25; 236(3):800-16. PubMed ID: 8114095 [Abstract] [Full Text] [Related]
33. New fluorescence evidence that each peptide of fatty acid synthetase has a keto and an enoyl reductase domain with different affinities for NADPH. Poulose AJ, Foster RJ, Kolattukudy PE. J Biol Chem; 1980 Dec 10; 255(23):11313-9. PubMed ID: 7440544 [Abstract] [Full Text] [Related]
34. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O, Scrutton NS, Munro AW. Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506 [Abstract] [Full Text] [Related]
35. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase. Ratnam K, Ma H, Penning TM. Biochemistry; 1999 Jun 15; 38(24):7856-64. PubMed ID: 10387026 [Abstract] [Full Text] [Related]
36. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Adams MJ, Ellis GH, Gover S, Naylor CE, Phillips C. Structure; 1994 Jul 15; 2(7):651-68. PubMed ID: 7922042 [Abstract] [Full Text] [Related]
37. Homology analysis of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast. Chang SI, Hammes GG. Proc Natl Acad Sci U S A; 1989 Nov 15; 86(21):8373-6. PubMed ID: 2682649 [Abstract] [Full Text] [Related]
39. Substrate recognition by the human fatty-acid synthase. Carlisle-Moore L, Gordon CR, Machutta CA, Miller WT, Tonge PJ. J Biol Chem; 2005 Dec 30; 280(52):42612-8. PubMed ID: 16215233 [Abstract] [Full Text] [Related]
40. Kinetic isotope effects on the oxidation of reduced nicotinamide adenine dinucleotide phosphate by the flavoprotein methylenetetrahydrofolate reductase. Vanoni MA, Matthews RG. Biochemistry; 1984 Oct 23; 23(22):5272-9. PubMed ID: 6391540 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]