These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 35368092
1. Quantitative analysis of smokeless powder particles in post-blast debris via gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV). Reavis M, Goodpaster J. J Forensic Sci; 2022 Jul; 67(4):1431-1440. PubMed ID: 35368092 [Abstract] [Full Text] [Related]
2. Analysis of the headspace composition of smokeless powders using GC-MS, GC-μECD and ion mobility spectrometry. Joshi M, Rigsby K, Almirall JR. Forensic Sci Int; 2011 May 20; 208(1-3):29-36. PubMed ID: 21109373 [Abstract] [Full Text] [Related]
3. Mapping smokeless powder residue on PVC pipe bomb fragments using total vaporization solid phase microextraction. Bors D, Goodpaster J. Forensic Sci Int; 2017 Jul 20; 276():71-76. PubMed ID: 28511057 [Abstract] [Full Text] [Related]
5. Vapor Signatures of Double-Base Smokeless Powders and Gunshot Residues for Supporting Canine Odor Imprinting. Ong TH, Ljunggren J, Mendum T, Geurtsen G, Kunz RR. ACS Omega; 2022 Jul 05; 7(26):22567-22576. PubMed ID: 35811902 [Abstract] [Full Text] [Related]
6. Analysis of DNA from post-blast pipe bomb fragments for identification and determination of ancestry. Tasker E, LaRue B, Beherec C, Gangitano D, Hughes-Stamm S. Forensic Sci Int Genet; 2017 May 05; 28():195-202. PubMed ID: 28292727 [Abstract] [Full Text] [Related]
8. Detection of odor signatures of smokeless powders using solid phase microextraction coupled to an ion mobility spectrometer. Joshi M, Delgado Y, Guerra P, Lai H, Almirall JR. Forensic Sci Int; 2009 Jul 01; 188(1-3):112-8. PubMed ID: 19410393 [Abstract] [Full Text] [Related]
11. Applications of Direct Injection Soft Chemical Ionisation-Mass Spectrometry for the Detection of Pre-blast Smokeless Powder Organic Additives. González-Méndez R, Mayhew CA. J Am Soc Mass Spectrom; 2019 Apr 01; 30(4):615-624. PubMed ID: 30761477 [Abstract] [Full Text] [Related]
12. The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation. Bors D, Cummins J, Goodpaster J. Forensic Sci Int; 2014 Jan 01; 234():95-102. PubMed ID: 24378308 [Abstract] [Full Text] [Related]
14. The anatomy of a pipe bomb explosion: measuring the mass and velocity distributions of container fragments. Bors D, Cummins J, Goodpaster J. J Forensic Sci; 2014 Jan 01; 59(1):42-51. PubMed ID: 24147889 [Abstract] [Full Text] [Related]
15. Novel method for the detection of nitroglycerin in smokeless powders. Roberts M, Petraco N, Gittings M. Sci Justice; 2015 Dec 01; 55(6):467-71. PubMed ID: 26654082 [Abstract] [Full Text] [Related]
16. Developing a quantitative extraction technique for determining the organic additives in smokeless handgun powder. Reardon MR, MacCrehan WA. J Forensic Sci; 2001 Jul 01; 46(4):802-7. PubMed ID: 11451060 [Abstract] [Full Text] [Related]
18. Progressing the analysis of Improvised Explosive Devices: Comparative study for trace detection of explosive residues in handprints by Raman spectroscopy and liquid chromatography. Zapata F, de la Ossa MÁF, Gilchrist E, Barron L, García-Ruiz C. Talanta; 2016 Dec 01; 161():219-227. PubMed ID: 27769399 [Abstract] [Full Text] [Related]
19. Optimization of the qualitative and quantitative analysis of cocaine and other drugs of abuse via gas chromatography - Vacuum ultraviolet spectrophotometry (GC - VUV). Roberson ZR, Goodpaster JV. Talanta; 2021 Jan 15; 222():121461. PubMed ID: 33167202 [Abstract] [Full Text] [Related]
20. Optimisation of recovery protocols for double-base smokeless powder residues analysed by total vaporisation (TV) SPME/GC-MS. Sauzier G, Bors D, Ash J, Goodpaster JV, Lewis SW. Talanta; 2016 Sep 01; 158():368-374. PubMed ID: 27343617 [Abstract] [Full Text] [Related] Page: [Next] [New Search]