These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 35384493

  • 21. An endoparasitoid avoids hyperparasitism by manipulating immobile host herbivore to modify host plant morphology.
    Fujii T, Matsuo K, Abe Y, Yukawa J, Tokuda M.
    PLoS One; 2014; 9(7):e102508. PubMed ID: 25033216
    [Abstract] [Full Text] [Related]

  • 22. Predation on rose galls: parasitoids and predators determine gall size through directional selection.
    László Z, Sólyom K, Prázsmári H, Barta Z, Tóthmérész B.
    PLoS One; 2014; 9(6):e99806. PubMed ID: 24918448
    [Abstract] [Full Text] [Related]

  • 23. Nutritive tissue rich in reserves in the cell wall and protoplast: the case of Manihot esculenta (Euphorbiaceae) galls induced by Iatrophobia brasiliensis (Diptera, Cecidomyiidae).
    de Souza AP, de Oliveira DC, Dalvi VC, Kuster VC.
    Protoplasma; 2024 May; 261(3):513-525. PubMed ID: 38114665
    [Abstract] [Full Text] [Related]

  • 24. Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps.
    Blaimer BB, Gotzek D, Brady SG, Buffington ML.
    BMC Evol Biol; 2020 Nov 23; 20(1):155. PubMed ID: 33228574
    [Abstract] [Full Text] [Related]

  • 25. Insect galls of Atlantic Forest areas of Serra da Bodoquena (MS, Midwestern Brazil).
    Ascendino S, Maia VC.
    An Acad Bras Cienc; 2023 Nov 23; 95(4):e20191091. PubMed ID: 38088695
    [Abstract] [Full Text] [Related]

  • 26. Structural patterns of Lepidoptera galls and the case of Andescecidium parrai (Cecidosidae) galls on Schinus polygama (Anacardiaceae).
    Guedes LM, Costa EC, Isaias RMS, Sáez-Carillo K, Aguilera N.
    J Plant Res; 2023 Sep 23; 136(5):715-728. PubMed ID: 37266742
    [Abstract] [Full Text] [Related]

  • 27. Eavesdropping on gall-plant interactions: the importance of the signaling function of induced volatiles.
    Barônio GJ, Oliveira DC.
    Plant Signal Behav; 2019 Sep 23; 14(11):1665454. PubMed ID: 31538533
    [Abstract] [Full Text] [Related]

  • 28. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
    de Oliveira DC, Isaias RM.
    Rev Biol Trop; 2009 Sep 23; 57(1-2):293-302. PubMed ID: 19637708
    [Abstract] [Full Text] [Related]

  • 29. Lopesia davillae (Diptera, Cecidomyiidae), a new species of gall midge from Brazil associated with Davilla rugosa (Dilleniaceae).
    Maia VC, Monteiro RF.
    Braz J Biol; 2017 Nov 23; 77(4):680-685. PubMed ID: 28300943
    [Abstract] [Full Text] [Related]

  • 30. Diversity of gall-inducing insects in the high altitude wetland forests in Pernambuco, Northeastern Brazil.
    Santos JC, Almeida-Cortez JS, Fernandes GW.
    Braz J Biol; 2011 Feb 23; 71(1):47-56. PubMed ID: 21437398
    [Abstract] [Full Text] [Related]

  • 31. Tri-trophic movement of carotenoid pigments from host plant to the parasitoid of a caterpillar.
    Wang XG, Wallis CM, Daane KM.
    J Insect Physiol; 2014 Feb 23; 61():58-65. PubMed ID: 24424343
    [Abstract] [Full Text] [Related]

  • 32. Distribution of galling insects and their parasitoids on Caryocar brasiliense tree crowns.
    Leite GLD, Veloso RVS, Azevedo AM, Almeida CIME, Soares MA, Pereira AIA, Lemes PG, Zanuncio JC.
    Braz J Biol; 2021 Feb 23; 82():e235017. PubMed ID: 34076163
    [Abstract] [Full Text] [Related]

  • 33. Diversity of insect galls associated with coastal shrub vegetation in Rio de Janeiro, Brazil.
    Carvalho-Fernandes SP, Ascendino S, Maia VC, Couri MS.
    An Acad Bras Cienc; 2016 Sep 23; 88(3):1407-18. PubMed ID: 27627066
    [Abstract] [Full Text] [Related]

  • 34. Plant-galling insect interactions: a data set of host plants and their gall-inducing insects for the Cerrado.
    Cintra FCF, de Araújo WS, Maia VC, Urso-Guimarães MV, Venâncio H, Andrade JF, Carneiro MAA, de Almeida WR, Santos JC.
    Ecology; 2020 Nov 23; 101(11):e03149. PubMed ID: 32737876
    [Abstract] [Full Text] [Related]

  • 35. Structural and Chemical Profiles of Myrcia splendens (Myrtaceae) Leaves Under the Influence of the Galling Nexothrips sp. (Thysanoptera).
    Jorge NC, Souza-Silva ÉA, Alvarenga DR, Saboia G, Soares GLG, Zini CA, Cavalleri A, Isaias RMS.
    Front Plant Sci; 2018 Nov 23; 9():1521. PubMed ID: 30459785
    [Abstract] [Full Text] [Related]

  • 36. Clinodiplosis agerati (Diptera, Cecidomyiidae), a new galling species associated with Ageratum conyzoides (Asteraceae) from Brazil.
    Maia VC, Araújo L.
    Braz J Biol; 2016 Apr 19; 76(3):782-6. PubMed ID: 27097086
    [Abstract] [Full Text] [Related]

  • 37. Host niches and defensive extended phenotypes structure parasitoid wasp communities.
    Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN.
    PLoS Biol; 2009 Aug 19; 7(8):e1000179. PubMed ID: 19707266
    [Abstract] [Full Text] [Related]

  • 38. Size, age and composition: characteristics of plant taxa as diversity predictors of gall-midges (Diptera: Cecidomyiidae).
    Araújo WS.
    Rev Biol Trop; 2011 Dec 19; 59(4):1599-607. PubMed ID: 22208077
    [Abstract] [Full Text] [Related]

  • 39. Insects galls of Pantanal areas in the State of Mato Grosso do Sul, Brazil: characterization and occurrence.
    Ascendino S, Maia VC.
    An Acad Bras Cienc; 2018 Dec 19; 90(2):1543-1564. PubMed ID: 29791563
    [Abstract] [Full Text] [Related]

  • 40. Are Fabaceae the principal super-hosts of galls in Brazil?
    Santos-Silva J, AraÚjo TJ.
    An Acad Bras Cienc; 2020 Dec 19; 92(2):e20181115. PubMed ID: 32785425
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.