These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 35389390

  • 1. A sensing system constructed by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification for highly sensitive miRNA detection.
    Sun S, Wang W, Hu X, Zheng C, Xiang Q, Yang Q, Zhang J, Shen ZF, Wu ZS.
    Analyst; 2022 May 03; 147(9):1937-1943. PubMed ID: 35389390
    [Abstract] [Full Text] [Related]

  • 2. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs.
    Gao Z, Wu C, Lv S, Wang C, Zhang N, Xiao S, Han Y, Xu H, Zhang Y, Li F, Lyu J, Shen Z.
    Anal Bioanal Chem; 2018 Oct 03; 410(26):6819-6826. PubMed ID: 30066196
    [Abstract] [Full Text] [Related]

  • 3. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H, Zhang Y, Zhang S, Sun M, Li W, Jiang Y, Wu ZS.
    Anal Chim Acta; 2019 Jan 24; 1047():172-178. PubMed ID: 30567647
    [Abstract] [Full Text] [Related]

  • 4. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J, Li XY, Du YC, Zhang LN, Liu KK, Zhu LN, Kong DM.
    Biosens Bioelectron; 2017 May 15; 91():417-423. PubMed ID: 28063390
    [Abstract] [Full Text] [Related]

  • 5. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification.
    Liu H, Li L, Duan L, Wang X, Xie Y, Tong L, Wang Q, Tang B.
    Anal Chem; 2013 Aug 20; 85(16):7941-7. PubMed ID: 23855808
    [Abstract] [Full Text] [Related]

  • 6. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)-based hairpin DNA fluorescent assay.
    Lee YJ, Jeong JY, Do JY, Hong CA.
    Anal Bioanal Chem; 2023 Apr 20; 415(10):1991-1999. PubMed ID: 36853410
    [Abstract] [Full Text] [Related]

  • 7. Engineering an endonuclease-assisted rolling circle amplification synergistically catalyzing hairpin assembly mediated fluorescence platform for miR-21 detection.
    Liang Z, Huang X, Tong Y, Lin X, Chen Z.
    Talanta; 2022 Sep 01; 247():123568. PubMed ID: 35609481
    [Abstract] [Full Text] [Related]

  • 8. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H, Yang Z, Jiang M, Zhang G, Gao Y, Shen Z, Wu ZS, Lou Y.
    Talanta; 2019 Nov 01; 204():29-35. PubMed ID: 31357296
    [Abstract] [Full Text] [Related]

  • 9. Highly Sensitive MicroRNA Detection by Coupling Nicking-Enhanced Rolling Circle Amplification with MoS2 Quantum Dots.
    Ge J, Hu Y, Deng R, Li Z, Zhang K, Shi M, Yang D, Cai R, Tan W.
    Anal Chem; 2020 Oct 06; 92(19):13588-13594. PubMed ID: 32894943
    [Abstract] [Full Text] [Related]

  • 10. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs.
    Zhao Y, Wang Y, Liu S, Wang C, Liang J, Li S, Qu X, Zhang R, Yu J, Huang J.
    Analyst; 2019 Aug 16; 144(17):5245-5253. PubMed ID: 31361292
    [Abstract] [Full Text] [Related]

  • 11. Integrated nicking enzyme-powered numerous-legged DNA walker prepared by rolling circle amplification for fluorescence detection of microRNA.
    Wang L, Zeng H, Yang X, Chen C, Ou S.
    Mikrochim Acta; 2021 May 29; 188(6):214. PubMed ID: 34052953
    [Abstract] [Full Text] [Related]

  • 12. MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy.
    Fang C, Ouyang P, Yang Y, Qing Y, Han J, Shang W, Chen Y, Du J.
    Biosensors (Basel); 2021 Jul 04; 11(7):. PubMed ID: 34356693
    [Abstract] [Full Text] [Related]

  • 13. Efficient and Exponential Rolling Circle Amplification Molecular Network Leads to Ultrasensitive and Label-Free Detection of MicroRNA.
    Li D, Zhang T, Yang F, Yuan R, Xiang Y.
    Anal Chem; 2020 Jan 21; 92(2):2074-2079. PubMed ID: 31884785
    [Abstract] [Full Text] [Related]

  • 14. Hybrid chain reaction nanoscaffold-based functional nucleic acid nanomaterial cascaded with rolling circle amplification for signal enhanced miRNA let-7a detection.
    Jiang H, Peng Z, Lv X, Liu Y, Li X, Deng Y.
    Mikrochim Acta; 2024 Aug 13; 191(9):533. PubMed ID: 39134753
    [Abstract] [Full Text] [Related]

  • 15. A label-free fluorescent enhancement nanosensor for ultrasensitive and highly selective detection of miRNA-378 through signal synergy amplification.
    Liu Z, Wang Y, Li J, Yuan Y, Wu X, Liu W, Liu Y.
    Anal Chim Acta; 2019 Dec 09; 1087():86-92. PubMed ID: 31585570
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Ultrasensitive Fluorescence Detection and Imaging of MicroRNA in Cells Based on a Hyperbranched RCA-Assisted Multiposition SDR Signal Amplification Strategy.
    Yang Z, Guo Y, Zhou J, Liu F, Liang W, Chai Y, Li Z, Yuan R.
    Anal Chem; 2022 Nov 22; 94(46):16237-16245. PubMed ID: 36346897
    [Abstract] [Full Text] [Related]

  • 18. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.
    Li W, Hou T, Wu M, Li F.
    Talanta; 2016 Nov 22; 148():116-21. PubMed ID: 26653431
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs.
    Tian W, Li P, He W, Liu C, Li Z.
    Biosens Bioelectron; 2019 Mar 01; 128():17-22. PubMed ID: 30616213
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.