These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 35398606

  • 1. Dual-channel cascade pose estimation network trained on infrared thermal image and groundtruth annotation for real-time gait measurement.
    Zhu Y, Lu W, Zhang R, Wang R, Robbins D.
    Med Image Anal; 2022 Jul; 79():102435. PubMed ID: 35398606
    [Abstract] [Full Text] [Related]

  • 2. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y, Lu W, Gan W, Hou W.
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [Abstract] [Full Text] [Related]

  • 3. A hand motion capture method based on infrared thermography for measuring fine motor skills in biomedicine.
    Zhu Y, Guo C.
    Artif Intell Med; 2023 Jan; 135():102474. PubMed ID: 36628786
    [Abstract] [Full Text] [Related]

  • 4. Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions.
    Mehdizadeh S, Nabavi H, Sabo A, Arora T, Iaboni A, Taati B.
    J Neuroeng Rehabil; 2021 Sep 15; 18(1):139. PubMed ID: 34526074
    [Abstract] [Full Text] [Related]

  • 5. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics.
    Washabaugh EP, Shanmugam TA, Ranganathan R, Krishnan C.
    Gait Posture; 2022 Sep 15; 97():188-195. PubMed ID: 35988434
    [Abstract] [Full Text] [Related]

  • 6. Two-dimensional video-based analysis of human gait using pose estimation.
    Stenum J, Rossi C, Roemmich RT.
    PLoS Comput Biol; 2021 Apr 15; 17(4):e1008935. PubMed ID: 33891585
    [Abstract] [Full Text] [Related]

  • 7. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture.
    Guess TM, Bliss R, Hall JB, Kiselica AM.
    Gait Posture; 2022 Jul 15; 96():130-136. PubMed ID: 35635988
    [Abstract] [Full Text] [Related]

  • 8. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S, Skalli W, Bonnet-Lebrun A, Khalifé M, Renaudin M, Hamza A, Gajny L.
    Gait Posture; 2021 May 15; 86():70-76. PubMed ID: 33711613
    [Abstract] [Full Text] [Related]

  • 9. Assessment of a novel deep learning-based marker-less motion capture system for gait study.
    Vafadar S, Skalli W, Bonnet-Lebrun A, Assi A, Gajny L.
    Gait Posture; 2022 May 15; 94():138-143. PubMed ID: 35306382
    [Abstract] [Full Text] [Related]

  • 10. Automating Video-Based Two-Dimensional Motion Analysis in Sport? Implications for Gait Event Detection, Pose Estimation, and Performance Parameter Analysis.
    Mundt M, Colyer S, Wade L, Needham L, Evans M, Millett E, Alderson J.
    Scand J Med Sci Sports; 2024 Jul 15; 34(7):e14693. PubMed ID: 38984681
    [Abstract] [Full Text] [Related]

  • 11. Agreement of spatio-temporal gait parameters between a vertical ground reaction force decomposition algorithm and a motion capture system.
    Veilleux LN, Raison M, Rauch F, Robert M, Ballaz L.
    Gait Posture; 2016 Jan 15; 43():257-64. PubMed ID: 26552654
    [Abstract] [Full Text] [Related]

  • 12. The accuracy of several pose estimation methods for 3D joint centre localisation.
    Needham L, Evans M, Cosker DP, Wade L, McGuigan PM, Bilzon JL, Colyer SL.
    Sci Rep; 2021 Oct 19; 11(1):20673. PubMed ID: 34667207
    [Abstract] [Full Text] [Related]

  • 13. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L, Needham L, McGuigan P, Bilzon J.
    PeerJ; 2022 Oct 19; 10():e12995. PubMed ID: 35237469
    [Abstract] [Full Text] [Related]

  • 14. Reconstructing 3D human pose and shape from a single image and sparse IMUs.
    Liao X, Zhuang J, Liu Z, Dong J, Song K, Xiao J.
    PeerJ Comput Sci; 2023 Oct 19; 9():e1401. PubMed ID: 37346531
    [Abstract] [Full Text] [Related]

  • 15. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT, De Vroey H, Claeys K, Hallez H, Soares LD, Correia PL.
    Comput Methods Programs Biomed; 2019 Jul 19; 175():45-51. PubMed ID: 31104714
    [Abstract] [Full Text] [Related]

  • 16. American society of biomechanics early career achievement award 2020: Toward portable and modular biomechanics labs: How video and IMU fusion will change gait analysis.
    Halilaj E, Shin S, Rapp E, Xiang D.
    J Biomech; 2021 Dec 02; 129():110650. PubMed ID: 34644610
    [Abstract] [Full Text] [Related]

  • 17. Enabling Gait Analysis in the Telemedicine Practice through Portable and Accurate 3D Human Pose Estimation.
    Martini E, Boldo M, Aldegheri S, Valè N, Filippetti M, Smania N, Bertucco M, Picelli A, Bombieri N.
    Comput Methods Programs Biomed; 2022 Oct 02; 225():107016. PubMed ID: 35907374
    [Abstract] [Full Text] [Related]

  • 18. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane.
    Patel G, Mullerpatan R, Agarwal B, Shetty T, Ojha R, Shaikh-Mohammed J, Sujatha S.
    Proc Inst Mech Eng H; 2022 May 02; 236(5):686-696. PubMed ID: 35001713
    [Abstract] [Full Text] [Related]

  • 19. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system.
    Kanko RM, Laende EK, Strutzenberger G, Brown M, Selbie WS, DePaul V, Scott SH, Deluzio KJ.
    J Biomech; 2021 Jun 09; 122():110414. PubMed ID: 33915475
    [Abstract] [Full Text] [Related]

  • 20. Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification.
    Kwon J, Lee Y, Lee J.
    Sensors (Basel); 2021 Dec 08; 21(24):. PubMed ID: 34960297
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.