These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 3540957
41. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain. Newton CJ, Kantrowitz ER. Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2309-13. PubMed ID: 2179954 [Abstract] [Full Text] [Related]
42. Differential scanning calorimetric studies of E. coli aspartate transcarbamylase. III. The denaturational thermodynamics of the holoenzyme with single-site mutations in the catalytic chain. Burz DS, Allewell NM, Ghosaini L, Hu CQ, Sturtevant JM. Biophys Chem; 1990 Aug 31; 37(1-3):31-41. PubMed ID: 2285793 [Abstract] [Full Text] [Related]
43. Three residues involved in binding and catalysis in the carbamyl phosphate binding site of Escherichia coli aspartate transcarbamylase. Stebbins JW, Xu W, Kantrowitz ER. Biochemistry; 1989 Mar 21; 28(6):2592-600. PubMed ID: 2659074 [Abstract] [Full Text] [Related]
44. Effects of assembly and mutations outside the active site on the functional pH dependence of Escherichia coli aspartate transcarbamylase. Yuan X, LiCata VJ, Allewell NM. J Biol Chem; 1996 Jan 19; 271(3):1285-94. PubMed ID: 8576114 [Abstract] [Full Text] [Related]
45. A cis-proline to alanine mutant of E. coli aspartate transcarbamoylase: kinetic studies and three-dimensional crystal structures. Jin L, Stec B, Kantrowitz ER. Biochemistry; 2000 Jul 11; 39(27):8058-66. PubMed ID: 10891088 [Abstract] [Full Text] [Related]
46. Importance of domain closure for the catalysis and regulation of Escherichia coli aspartate transcarbamoylase. Macol CP, Tsuruta H, Kantrowitz ER. J Biol Chem; 2002 Jul 26; 277(30):26852-7. PubMed ID: 12016227 [Abstract] [Full Text] [Related]
47. Ligand-promoted weakening of intersubunit bonding domains in aspartate transcarbamolylase. Subramani S, Bothwell MA, Gibbons I, Yang YR, Schachman HK. Proc Natl Acad Sci U S A; 1977 Sep 26; 74(9):3777-81. PubMed ID: 333446 [Abstract] [Full Text] [Related]
49. In vivo assembly of aspartate transcarbamoylase from fragmented and circularly permuted catalytic polypeptide chains. Ni X, Schachman HK. Protein Sci; 2001 Mar 26; 10(3):519-27. PubMed ID: 11344320 [Abstract] [Full Text] [Related]
50. A single mutation in the regulatory chain of Escherichia coli aspartate transcarbamoylase results in an extreme T-state structure. Williams MK, Stec B, Kantrowitz ER. J Mol Biol; 1998 Aug 07; 281(1):121-34. PubMed ID: 9680480 [Abstract] [Full Text] [Related]
53. Assembly of the aspartate transcarbamoylase holoenzyme from transcriptionally independent catalytic and regulatory cistrons. Foltermann KF, Shanley MS, Wild JR. J Bacteriol; 1984 Mar 07; 157(3):891-8. PubMed ID: 6365893 [Abstract] [Full Text] [Related]
54. Assembly of the catalytic trimers of aspartate transcarbamoylase from unfolded polypeptide chains. Burns DL, Schachman HK. J Biol Chem; 1982 Aug 10; 257(15):8648-54. PubMed ID: 7096328 [Abstract] [Full Text] [Related]
55. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer. Zhou BB, Waldrop GL, Lum L, Schachman HK. Protein Sci; 1994 Jun 10; 3(6):967-74. PubMed ID: 8069226 [Abstract] [Full Text] [Related]
56. Quaternary constraint in hybrid of aspartate transcarbamylase containing wild-type and mutant catalytic subunits. Gibbons I, Flatgaard JE, Schachman HK. Proc Natl Acad Sci U S A; 1975 Nov 10; 72(11):4298-302. PubMed ID: 1105578 [Abstract] [Full Text] [Related]
57. Heterotropic interactions in aspartate transcarbamoylase: turning allosteric ATP activation into inhibition as a consequence of a single tyrosine to phenylalanine mutation. Van Vliet F, Xi XG, De Staercke C, de Wannemaeker B, Jacobs A, Cherfils J, Ladjimi MM, Hervé G, Cunin R. Proc Natl Acad Sci U S A; 1991 Oct 15; 88(20):9180-3. PubMed ID: 1924381 [Abstract] [Full Text] [Related]
58. The importance of the link between Glu204 of the catalytic chain and Arg130 of the regulatory chain for the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. Stebbins JW, Kantrowitz ER. J Biol Chem; 1989 Sep 05; 264(25):14860-4. PubMed ID: 2570069 [Abstract] [Full Text] [Related]
60. Glutamic acid 86 is important for positioning the 80's loop and arginine 54 at the active site of Escherichia coli aspartate transcarbamoylase and for the structural stabilization of the C1-C2 interface. Baker DP, Stebbins JW, DeSena E, Kantrowitz ER. J Biol Chem; 1994 Oct 07; 269(40):24608-14. PubMed ID: 7929132 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]