These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
588 related items for PubMed ID: 35413909
21. Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa. Koch SF, Duong JK, Hsu CW, Tsai YT, Lin CS, Wahl-Schott CA, Tsang SH. Proc Natl Acad Sci U S A; 2017 May 16; 114(20):5259-5264. PubMed ID: 28468800 [Abstract] [Full Text] [Related]
23. Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina. Blackmon SM, Peng YW, Hao Y, Moon SJ, Oliveira LB, Tatebayashi M, Petters RM, Wong F. Brain Res; 2000 Dec 01; 885(1):53-61. PubMed ID: 11121529 [Abstract] [Full Text] [Related]
24. Selective transplantation of rods delays cone loss in a retinitis pigmentosa model. Mohand-Said S, Hicks D, Dreyfus H, Sahel JA. Arch Ophthalmol; 2000 Jun 01; 118(6):807-11. PubMed ID: 10865319 [Abstract] [Full Text] [Related]
25. Mechanism of Cone Degeneration in Retinitis Pigmentosa. Song DJ, Bao XL, Fan B, Li GY. Cell Mol Neurobiol; 2023 Apr 01; 43(3):1037-1048. PubMed ID: 35792991 [Abstract] [Full Text] [Related]
26. Cone-Enriched Cultures from the Retina of Chicken Embryos to Study Rod to Cone Cellular Interactions. Millet-Puel G, Pinault M, Cordonnier M, Fontaine V, Sahel JA, Léveillard T. J Vis Exp; 2021 Mar 20; (169):. PubMed ID: 33818576 [Abstract] [Full Text] [Related]
27. Mathematical models of retinitis pigmentosa: The trophic factor hypothesis. Roberts PA. J Theor Biol; 2022 Feb 07; 534():110938. PubMed ID: 34687673 [Abstract] [Full Text] [Related]
28. Optimal timing for activation of sigma 1 receptor in the Pde6brd10/J (rd10) mouse model of retinitis pigmentosa. Wang J, Xiao H, Barwick S, Liu Y, Smith SB. Exp Eye Res; 2021 Jan 07; 202():108397. PubMed ID: 33310057 [Abstract] [Full Text] [Related]
29. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. J Comp Neurol; 2007 Jan 10; 500(2):222-38. PubMed ID: 17111372 [Abstract] [Full Text] [Related]
30. Retinoic acid signaling mediates peripheral cone photoreceptor survival in a mouse model of retina degeneration. Amamoto R, Wallick GK, Cepko CL. Elife; 2022 Mar 22; 11():. PubMed ID: 35315776 [Abstract] [Full Text] [Related]
31. Sex-related differences in the progressive retinal degeneration of the rd10 mouse. Li B, Gografe S, Munchow A, Lopez-Toledano M, Pan ZH, Shen W. Exp Eye Res; 2019 Oct 22; 187():107773. PubMed ID: 31445902 [Abstract] [Full Text] [Related]
32. Single-Cell Transcriptomic Profiling of Müller Glia in the rd10 Retina. Sigurdsson D, Grimm C. Adv Exp Med Biol; 2023 Oct 22; 1415():377-381. PubMed ID: 37440060 [Abstract] [Full Text] [Related]
33. Oxidative stress-induced alterations in retinal glucose metabolism in Retinitis Pigmentosa. Kanan Y, Hackett SF, Taneja K, Khan M, Campochiaro PA. Free Radic Biol Med; 2022 Mar 22; 181():143-153. PubMed ID: 35134532 [Abstract] [Full Text] [Related]
34. Soluble CX3CL1-expressing retinal pigment epithelium cells protect rod photoreceptors in a mouse model of retinitis pigmentosa. Jong ED, Hacibekiroglu S, Guo L, Sawula E, Li B, Li C, Ho MT, Shoichet MS, Wallace VA, Nagy A. Stem Cell Res Ther; 2023 Aug 21; 14(1):212. PubMed ID: 37605279 [Abstract] [Full Text] [Related]
35. Retinal morphological and functional changes in an animal model of retinitis pigmentosa. Lu B, Morgans CW, Girman S, Lund R, Wang S. Vis Neurosci; 2013 May 21; 30(3):77-89. PubMed ID: 23510618 [Abstract] [Full Text] [Related]
36. Retinal Pigment Epithelium Remodeling in Mouse Models of Retinitis Pigmentosa. Napoli D, Biagioni M, Billeri F, Di Marco B, Orsini N, Novelli E, Strettoi E. Int J Mol Sci; 2021 May 20; 22(10):. PubMed ID: 34065385 [Abstract] [Full Text] [Related]
37. Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. Sato K, Li S, Gordon WC, He J, Liou GI, Hill JM, Travis GH, Bazan NG, Jin M. J Neurosci; 2013 Oct 30; 33(44):17458-68. PubMed ID: 24174679 [Abstract] [Full Text] [Related]
38. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia. Schön C, Asteriti S, Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Herms J, Seeliger MW, Cangiano L, Biel M, Michalakis S. Hum Mol Genet; 2016 Mar 15; 25(6):1165-75. PubMed ID: 26740549 [Abstract] [Full Text] [Related]
39. Deletion of the transmembrane protein Prom1b in zebrafish disrupts outer-segment morphogenesis and causes photoreceptor degeneration. Lu Z, Hu X, Reilly J, Jia D, Liu F, Yu S, Liu X, Xie S, Qu Z, Qin Y, Huang Y, Lv Y, Li J, Gao P, Wong F, Shu X, Tang Z, Liu M. J Biol Chem; 2019 Sep 20; 294(38):13953-13963. PubMed ID: 31362982 [Abstract] [Full Text] [Related]
40. Reduced inspired oxygen decreases retinal superoxide radicals and promotes cone function and survival in a model of retinitis pigmentosa. Kanan Y, Hackett SF, Hsueh HT, Khan M, Ensign LM, Campochiaro PA. Free Radic Biol Med; 2023 Mar 20; 198():118-122. PubMed ID: 36736930 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]