These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 35419685
61. Determination, residue analysis, risk assessment and processing factor of pymetrozine and its metabolites in Chinese kale under field conditions. Gong J, Zheng K, Yang G, Zhao S, Zhang K, Hu D. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jan; 36(1):141-151. PubMed ID: 30632916 [Abstract] [Full Text] [Related]
62. Enhanced degradation of spiro-insecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques. Fenoll J, Garrido I, Vela N, Ros C, Navarro S. Environ Sci Pollut Res Int; 2017 Apr; 24(10):9278-9285. PubMed ID: 28229382 [Abstract] [Full Text] [Related]
65. Controlled-release granules for the delivery of pymetrozine to roots of transplanted rice seedlings with decreased phytotoxicity and enhanced control efficacy against paddy planthoppers. Hao F, Liu X, Yuan H, Yan X, Yang D. Pest Manag Sci; 2022 Feb; 78(2):812-820. PubMed ID: 34716656 [Abstract] [Full Text] [Related]
66. Contribution of cytochrome P450 monooxygenase CYP380C6 to spirotetramat resistance in Aphis gossypii Glover. Pan Y, Chai P, Zheng C, Xu H, Wu Y, Gao X, Xi J, Shang Q. Pestic Biochem Physiol; 2018 Jun; 148():182-189. PubMed ID: 29891371 [Abstract] [Full Text] [Related]
67. Uptake, localization, and speciation of cobalt in Triticum aestivum L. (wheat) and Lycopersicon esculentum M. (tomato). Collins RN, Bakkaus E, Carrière M, Khodja H, Proux O, Morel JL, Gouget B. Environ Sci Technol; 2010 Apr 15; 44(8):2904-10. PubMed ID: 20345097 [Abstract] [Full Text] [Related]
68. Translocation of radionuclides of Co, Zn, Se, Rb, Y, Tc, and Re into organs of tomato plant via roots. Shinonaga T, Ambe S. Biol Trace Elem Res; 2005 Apr 15; 104(1):71-82. PubMed ID: 15851834 [Abstract] [Full Text] [Related]
69. A laboratory study on dissipation and risk assessment of the proinsecticide thiocyclam and its metabolite nereistoxin in tomato using liquid chromatography high resolution mass spectrometry. López-Ruiz R, Belmonte-Sánchez E, Romero-González R, Martínez Vidal JL, Ramírez-Cassinello JJ, Garrido Frenich A. Food Chem; 2021 May 15; 344():128729. PubMed ID: 33277122 [Abstract] [Full Text] [Related]
70. Metabolism-based synthesis, biological evaluation and structure-activity relationship analysis of spirotetramat analogues as potential lipid biosynthesis inhibitors. Cheng JL, He XR, Wang ZC, Zhang JG, Zhao JH, Zhu GN. Pest Manag Sci; 2013 Oct 15; 69(10):1121-30. PubMed ID: 23436572 [Abstract] [Full Text] [Related]
71. Dysregulation of endocrine disruption, apoptosis and the transgenerational toxicity induced by spirotetramat. Zhang J, Qian L, Wang C, Teng M, Duan M, Zhou Y, Chen X, Bo R, Wang C, Li X. Chemosphere; 2020 Feb 15; 240():124900. PubMed ID: 31563099 [Abstract] [Full Text] [Related]
72. Cross-resistance and baseline susceptibility of spirotetramat in Frankliniella occidentalis (Thysanoptera: Thripidae). Guillén J, Navarro M, Bielza P. J Econ Entomol; 2014 Jun 15; 107(3):1239-44. PubMed ID: 25026688 [Abstract] [Full Text] [Related]
73. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops. Felizeter S, McLachlan MS, De Voogt P. J Agric Food Chem; 2014 Apr 16; 62(15):3334-42. PubMed ID: 24646206 [Abstract] [Full Text] [Related]
74. Ovicidal activity of spirotetramat and its effect on hatching, development and formation of Frankliniella occidentalis egg. Yang X, Zhou G, Sun L, Zheng C. Sci Rep; 2021 Oct 21; 11(1):20751. PubMed ID: 34675238 [Abstract] [Full Text] [Related]
75. Occurrence and distribution of organochlorine pesticides (OCPs) in tomato (Lycopersicon esculentum) crops from organic production. Gonzalez M, Miglioranza KS, Aizpún de Moreno JE, Moreno VJ. J Agric Food Chem; 2003 Feb 26; 51(5):1353-9. PubMed ID: 12590481 [Abstract] [Full Text] [Related]
76. Residues and dynamics of pymetrozine in rice field ecosystem. Li C, Yang T, Huangfu W, Wu Y. Chemosphere; 2011 Feb 26; 82(6):901-4. PubMed ID: 21074245 [Abstract] [Full Text] [Related]
77. Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar delta15N values. Vallano DM, Sparks JP. New Phytol; 2008 Feb 26; 177(4):946-955. PubMed ID: 18069953 [Abstract] [Full Text] [Related]
78. Tomato plants (Solanum lycopersicum L.) grown in experimental contaminated soil: Bioconcentration of potentially toxic elements and free radical scavenging evaluation. Piscitelli C, Lavorgna M, De Prisco R, Coppola E, Grilli E, Russo C, Isidori M. PLoS One; 2020 Feb 26; 15(8):e0237031. PubMed ID: 32790698 [Abstract] [Full Text] [Related]
79. Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spirotetramat. Prabhaker N, Castle S, Perring TM. J Econ Entomol; 2014 Apr 26; 107(2):773-80. PubMed ID: 24772560 [Abstract] [Full Text] [Related]
80. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions. Gharaibeh MA, Marschner B, Heinze S. Environ Sci Pollut Res Int; 2015 Dec 26; 22(23):18894-905. PubMed ID: 26206131 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]