These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets. Leonov AO. Phys Rev E; 2021 Oct; 104(4-1):044701. PubMed ID: 34781482 [Abstract] [Full Text] [Related]
5. A theory of skyrmion crystal formation. Hu XC, Wu HT, Wang XR. Nanoscale; 2022 May 26; 14(20):7516-7529. PubMed ID: 35545217 [Abstract] [Full Text] [Related]
6. Magnon bands in pyrochlore slabs with Heisenberg exchange and anisotropies. Jyothis VV, Patra B, Chandra VR. J Phys Condens Matter; 2024 Feb 06; 36(18):. PubMed ID: 38262036 [Abstract] [Full Text] [Related]
8. Nucleation and Stability of Toron Chains in Non-Centrosymmetric Magnetic Nanowires. Castillo-Sepúlveda S, Corona RM, Saavedra E, Laroze D, Espejo AP, Carvalho-Santos VL, Altbir D. Nanomaterials (Basel); 2023 Jun 07; 13(12):. PubMed ID: 37368246 [Abstract] [Full Text] [Related]
9. Reversal of helicoidal twist handedness near point defects of confined chiral liquid crystals. Ackerman PJ, Smalyukh II. Phys Rev E; 2016 May 07; 93(5):052702. PubMed ID: 27300955 [Abstract] [Full Text] [Related]
10. Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. Ma C, Zhang X, Xia J, Ezawa M, Jiang W, Ono T, Piramanayagam SN, Morisako A, Zhou Y, Liu X. Nano Lett; 2019 Jan 09; 19(1):353-361. PubMed ID: 30537837 [Abstract] [Full Text] [Related]
11. Topological switching and orbiting dynamics of colloidal spheres dressed with chiral nematic solitons. Porenta T, Copar S, Ackerman PJ, Pandey MB, Varney MC, Smalyukh II, Žumer S. Sci Rep; 2014 Dec 05; 4():7337. PubMed ID: 25477195 [Abstract] [Full Text] [Related]
12. Magnetic-field-induced stepwise director reorientation and untwisting of a planar cholesteric structure with finite anchoring energy. Zakhlevnykh AN, Shavkunov VS. Phys Rev E; 2016 Oct 05; 94(4-1):042708. PubMed ID: 27841611 [Abstract] [Full Text] [Related]
13. Skyrmions at vanishingly small Dzyaloshinskii-Moriya interaction or zero magnetic field. Bera S, Mandal SS. J Phys Condens Matter; 2021 May 21; 33(25):. PubMed ID: 33848984 [Abstract] [Full Text] [Related]
15. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Karube K, White JS, Morikawa D, Dewhurst CD, Cubitt R, Kikkawa A, Yu X, Tokunaga Y, Arima TH, Rønnow HM, Tokura Y, Taguchi Y. Sci Adv; 2018 Sep 21; 4(9):eaar7043. PubMed ID: 30225364 [Abstract] [Full Text] [Related]
16. Magnetic Direct-Write Skyrmion Nanolithography. Ognev AV, Kolesnikov AG, Kim YJ, Cha IH, Sadovnikov AV, Nikitov SA, Soldatov IV, Talapatra A, Mohanty J, Mruczkiewicz M, Ge Y, Kerber N, Dittrich F, Virnau P, Kläui M, Kim YK, Samardak AS. ACS Nano; 2020 Nov 24; 14(11):14960-14970. PubMed ID: 33152236 [Abstract] [Full Text] [Related]
19. Non-planar Dzyaloshinskii spirals and magnetic domain walls in non-centrosymmetric systems with orthorhombic anisotropy. Heide M, Bihlmayer G, Blügel S. J Nanosci Nanotechnol; 2011 Apr 24; 11(4):3005-15. PubMed ID: 21776668 [Abstract] [Full Text] [Related]