These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 35428186

  • 1. Transcriptome profiling of flower buds of male-sterile lines provides new insights into male sterility mechanism in alfalfa.
    Xu B, Wu R, Shi F, Gao C, Wang J.
    BMC Plant Biol; 2022 Apr 15; 22(1):199. PubMed ID: 35428186
    [Abstract] [Full Text] [Related]

  • 2. Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.).
    Chen G, Ye X, Zhang S, Zhu S, Yuan L, Hou J, Wang C.
    BMC Genomics; 2018 Dec 12; 19(1):908. PubMed ID: 30541424
    [Abstract] [Full Text] [Related]

  • 3. Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.).
    Liu H, Tan M, Yu H, Li L, Zhou F, Yang M, Zhou T, Zhao Y.
    BMC Plant Biol; 2016 Nov 10; 16(1):250. PubMed ID: 27832742
    [Abstract] [Full Text] [Related]

  • 4. TMT-based quantitative proteomics analyses of sterile/fertile anthers from a genic male-sterile line and its maintainer in cotton (Gossypium hirsutum L.).
    Chen Z, Zhong W, Chen S, Zhou Y, Ji P, Gong Y, Yang Z, Mao Z, Zhang C, Mu F.
    J Proteomics; 2021 Feb 10; 232():104026. PubMed ID: 33127528
    [Abstract] [Full Text] [Related]

  • 5. Transcriptome analysis of differentially expressed genes during anther development stages on male sterility and fertility in Cucumis melo L. line.
    Dai D, Xiong A, Yuan L, Sheng Y, Ji P, Jin Y, Li D, Wang Y, Luan F.
    Gene; 2019 Jul 30; 707():65-77. PubMed ID: 31059736
    [Abstract] [Full Text] [Related]

  • 6. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis).
    Zhou X, Liu Z, Ji R, Feng H.
    Mol Genet Genomics; 2017 Oct 30; 292(5):967-990. PubMed ID: 28492984
    [Abstract] [Full Text] [Related]

  • 7. Comparative transcriptome between male fertile and male sterile alfalfa (Medicago varia).
    Wang J, Tang F, Gao C, Gao X, Xu B, Shi F.
    Physiol Mol Biol Plants; 2021 Jul 30; 27(7):1487-1498. PubMed ID: 34366591
    [Abstract] [Full Text] [Related]

  • 8. Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line.
    Zhang M, Liu J, Ma Q, Qin Y, Wang H, Chen P, Ma L, Fu X, Zhu L, Wei H, Yu S.
    BMC Genomics; 2020 Nov 23; 21(1):825. PubMed ID: 33228563
    [Abstract] [Full Text] [Related]

  • 9. Potential candidate genes and pathways related to cytoplasmic male sterility in Dianthus spiculifolius as revealed by transcriptome analysis.
    Liu Y, Sun H, Ye R, Du J, Zhang H, Zhou A, Qiao K, Wang J.
    Plant Cell Rep; 2023 Sep 23; 42(9):1503-1516. PubMed ID: 37452219
    [Abstract] [Full Text] [Related]

  • 10. iTRAQ-based proteomic analysis of fertile and sterile flower buds from a genetic male sterile line 'AB01' in Chinese cabbage (Brassica campestris L. ssp. pekinensis).
    Zhou X, Shi F, Zhou L, Zhou Y, Liu Z, Ji R, Feng H.
    J Proteomics; 2019 Jul 30; 204():103395. PubMed ID: 31146048
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Transcriptomic and Proteomic Analyses of Celery Cytoplasmic Male Sterile Line and Its Maintainer Line.
    Wang H, Cheng Q, Zhai Z, Cui X, Li M, Ye R, Sun L, Shen H.
    Int J Mol Sci; 2023 Feb 20; 24(4):. PubMed ID: 36835607
    [Abstract] [Full Text] [Related]

  • 13. The key genes and pathways related to male sterility of eggplant revealed by comparative transcriptome analysis.
    Yang Y, Bao S, Zhou X, Liu J, Zhuang Y.
    BMC Plant Biol; 2018 Sep 24; 18(1):209. PubMed ID: 30249187
    [Abstract] [Full Text] [Related]

  • 14. Transcriptome analysis and identification of abscisic acid and gibberellin-related genes during seed development of alfalfa (Medicago sativa L.).
    Zhao L, Li M, Ma X, Luo D, Zhou Q, Liu W, Liu Z.
    BMC Genomics; 2022 Sep 13; 23(1):651. PubMed ID: 36100883
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Conjunctive Analyses of BSA-Seq and BSR-Seq Unveil the Msβ-GAL and MsJMT as Key Candidate Genes for Cytoplasmic Male Sterility in Alfalfa (Medicago sativa L.).
    Zhou L, Wang Y, Xu X, Yan D, Yu W, Miao Y, Xu B.
    Int J Mol Sci; 2022 Jun 28; 23(13):. PubMed ID: 35806189
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Identification of Cold Tolerance Transcriptional Regulatory Genes in Seedlings of Medicago sativa L. and Medicago falcata L.
    Wang Q, Wu J, Di G, Zhao Q, Gao C, Zhang D, Wang J, Shen Z, Han W.
    Int J Mol Sci; 2024 Sep 26; 25(19):. PubMed ID: 39408674
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.