These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
247 related items for PubMed ID: 35430527
1. Rolling circle amplification assisted dual signal amplification colorimetric biosensor for ultrasensitive detection of leukemia-derived exosomes. Li C, Zhou M, Wang H, Wang J, Huang L. Talanta; 2022 Aug 01; 245():123444. PubMed ID: 35430527 [Abstract] [Full Text] [Related]
2. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Du Y, Zhou Y, Wen Y, Bian X, Xie Y, Zhang W, Liu G, Yan J. Mikrochim Acta; 2019 Nov 25; 186(12):840. PubMed ID: 31768650 [Abstract] [Full Text] [Related]
4. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Huang L, Wang DB, Singh N, Yang F, Gu N, Zhang XE. Nanoscale; 2018 Nov 08; 10(43):20289-20295. PubMed ID: 30371719 [Abstract] [Full Text] [Related]
5. Horseradish peroxidase-encapsulated DNA nanoflowers: An innovative signal-generation tag for colorimetric biosensor. Zeng R, Wang J, Wang Q, Tang D, Lin Y. Talanta; 2021 Jan 01; 221():121600. PubMed ID: 33076131 [Abstract] [Full Text] [Related]
6. DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes. Zhao Z, Yang S, Tang X, Feng L, Ding Z, Chen Z, Luo X, Deng R, Sheng J, Xie S, Chang K, Chen M. Biosens Bioelectron; 2024 Feb 15; 246():115841. PubMed ID: 38006701 [Abstract] [Full Text] [Related]
8. Ultrasensitive Electrochemiluminescence Biosensor Based on DNA-Bio-Bar-Code and Hybridization Chain Reaction Dual Signal Amplification for Exosomes Detection. Meng X, Pang X, Liu X, Luo S, Zhang X, Dong H. Anal Chem; 2024 Aug 13; 96(32):13299-13307. PubMed ID: 39090799 [Abstract] [Full Text] [Related]
9. A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine. Li D, Cheng W, Yan Y, Zhang Y, Yin Y, Ju H, Ding S. Talanta; 2016 Aug 13; 146():470-6. PubMed ID: 26695292 [Abstract] [Full Text] [Related]
12. Colorimetric aptasensor for the detection of mercury based on signal intensification by rolling circle amplification. Wu S, Yu Q, He C, Duan N. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan 05; 224():117387. PubMed ID: 31352141 [Abstract] [Full Text] [Related]
16. Colorimetric liquid crystal-based assay for the ultrasensitive detection of AFB1 assisted with rolling circle amplification. Wu W, Xia S, Zhao M, Ping J, Lin JM, Hu Q. Anal Chim Acta; 2022 Aug 08; 1220():340065. PubMed ID: 35868704 [Abstract] [Full Text] [Related]
17. Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Chen C, Luo M, Ye T, Li N, Ji X, He Z. Analyst; 2015 Jul 07; 140(13):4515-20. PubMed ID: 25988199 [Abstract] [Full Text] [Related]
18. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate. Wang P, Zhang T, Yang T, Jin N, Zhao Y, Fan A. Analyst; 2014 Aug 07; 139(15):3796-803. PubMed ID: 24899364 [Abstract] [Full Text] [Related]
20. Rolling circle amplification based colorimetric determination of Staphylococcus aureus. Li Y, Wang J, Wang S, Wang J. Mikrochim Acta; 2020 Jan 11; 187(2):119. PubMed ID: 31927667 [Abstract] [Full Text] [Related] Page: [Next] [New Search]