These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 35459516

  • 21. Elucidating contributions of volatile organic compounds to ozone formation using random forest during COVID-19 pandemic: A case study in China.
    Lyu Y, Gao Y, Pang X, Sun S, Luo P, Cai D, Qin K, Wu Z, Wang B.
    Environ Pollut; 2024 Apr 01; 346():123532. PubMed ID: 38365075
    [Abstract] [Full Text] [Related]

  • 22. Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China.
    Zhang Y, Yang W, Simpson I, Huang X, Yu J, Huang Z, Wang Z, Zhang Z, Liu D, Huang Z, Wang Y, Pei C, Shao M, Blake DR, Zheng J, Huang Z, Wang X.
    Environ Pollut; 2018 Feb 01; 233():806-819. PubMed ID: 29144986
    [Abstract] [Full Text] [Related]

  • 23. Ambient volatile organic compounds pollution in China.
    Zhang X, Xue Z, Li H, Yan L, Yang Y, Wang Y, Duan J, Li L, Chai F, Cheng M, Zhang W.
    J Environ Sci (China); 2017 May 01; 55():69-75. PubMed ID: 28477835
    [Abstract] [Full Text] [Related]

  • 24. Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation.
    Liu Q, Sheng J, Wu Y, Ma Z, Sun J, Tian P, Zhao D, Li X, Hu K, Li S, Shen X, Zhang Y, He H, Huang M, Ding D, Liu D.
    Sci Total Environ; 2023 Feb 20; 860():160469. PubMed ID: 36464057
    [Abstract] [Full Text] [Related]

  • 25. Dramatic decrease of secondary organic aerosol formation potential in Beijing: Important contribution from reduction of coal combustion emission.
    Liu J, Chu B, Jia Y, Cao Q, Zhang H, Chen T, Ma Q, Ma J, Wang Y, Zhang P, He H.
    Sci Total Environ; 2022 Aug 01; 832():155045. PubMed ID: 35398421
    [Abstract] [Full Text] [Related]

  • 26. Volatile organic compounds from a mixed fleet with numerous E10-fuelled vehicles in a tunnel study in China: Emission characteristics, ozone formation and secondary organic aerosol formation.
    Jin B, Zhu R, Mei H, Wang M, Zu L, Yu S, Zhang R, Li S, Bao X.
    Environ Res; 2021 Sep 01; 200():111463. PubMed ID: 34111436
    [Abstract] [Full Text] [Related]

  • 27. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu.
    Deng Y, Li J, Li Y, Wu R, Xie S.
    J Environ Sci (China); 2019 Jan 01; 75():334-345. PubMed ID: 30473299
    [Abstract] [Full Text] [Related]

  • 28. [Characteristics, Sources, and SOAP of VOCs During Winter in Jiyuan].
    Wang F, Li LX, Wang HG, Zhao ZS, Zhang JP, Zhang D.
    Huan Jing Ke Xue; 2022 Jul 08; 43(7):3451-3462. PubMed ID: 35791530
    [Abstract] [Full Text] [Related]

  • 29. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China.
    Liu B, Liang D, Yang J, Dai Q, Bi X, Feng Y, Yuan J, Xiao Z, Zhang Y, Xu H.
    Environ Pollut; 2016 Nov 08; 218():757-769. PubMed ID: 27567166
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. [Characteristics of Secondary Organic Particles and the Potential Formation of SOA from VOCs During Wintertime Heavy Pollution Episodes in Tianjin].
    Xu H, Tang M, Xiao ZM, Gao JY, Yang N, Li LW, Zheng NY, Chen K, Deng XW.
    Huan Jing Ke Xue; 2020 Aug 08; 41(8):3492-3499. PubMed ID: 33124321
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Emission of VOCs from service stations in Beijing: Species characteristics and pollutants co-control based on SOA and O3.
    Hu W, Liang W, Huang Y, Liu M, Yang H, Ren B, Yang T.
    J Environ Manage; 2023 Jun 15; 336():117614. PubMed ID: 36933513
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example.
    Zhang X, Zhao W, Nie L, Shao X, Dang H, Zhang W, Wang D.
    Environ Pollut; 2021 Jan 01; 268(Pt A):115868. PubMed ID: 33139094
    [Abstract] [Full Text] [Related]

  • 40. [Characteristics and Source Apportionment of Volatile Organic Compounds (VOCs) in a Typical Industrial Area in Dongguan During Periods of Ozone and Non-ozone Pollution in Summer].
    Zhou Z, Xiao LH, Fei LL, Yu W, Lin M, Huang JJ, Zhang ZS, Tao J.
    Huan Jing Ke Xue; 2022 Sep 08; 43(9):4497-4505. PubMed ID: 36096590
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.