These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 35461893
1. Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils. Lu HL, Li KW, Nkoh JN, Shi YX, He X, Hong ZN, Xu RK. Chemosphere; 2022 Aug; 301():134674. PubMed ID: 35461893 [Abstract] [Full Text] [Related]
2. Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium. He X, Nkoh JN, Shi RY, Xu RK. Environ Pollut; 2022 Nov 15; 313():120175. PubMed ID: 36115484 [Abstract] [Full Text] [Related]
3. Mechanisms for Increasing the pH Buffering Capacity of an Acidic Ultisol by Crop Residue-Derived Biochars. Shi RY, Hong ZN, Li JY, Jiang J, Baquy MA, Xu RK, Qian W. J Agric Food Chem; 2017 Sep 20; 65(37):8111-8119. PubMed ID: 28846405 [Abstract] [Full Text] [Related]
4. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Shi RY, Ni N, Nkoh JN, Li JY, Xu RK, Qian W. Chemosphere; 2019 Nov 20; 234():43-51. PubMed ID: 31203040 [Abstract] [Full Text] [Related]
5. Effects of pH variations caused by redox reactions and pH buffering capacity on Cd(II) speciation in paddy soils during submerging/draining alternation. Lu HL, Li KW, Nkoh JN, He X, Xu RK, Qian W, Shi RY, Hong ZN. Ecotoxicol Environ Saf; 2022 Apr 01; 234():113409. PubMed ID: 35286955 [Abstract] [Full Text] [Related]
6. Alteration of soil pH induced by submerging/drainage and application of peanut straw biochar and its impact on Cd(II) availability in an acidic soil to indica-japonica rice varieties. Biswash MR, Li KW, Xu RK, Uwiringiyimana E, Guan P, Lu HL, Li JY, Jiang J, Hong ZN, Shi RY. Environ Pollut; 2024 Sep 01; 356():124361. PubMed ID: 38871167 [Abstract] [Full Text] [Related]
8. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of biochar type and dosage, rice variety, and pollution level. Zhang M, Shan S, Chen Y, Wang F, Yang D, Ren J, Lu H, Ping L, Chai Y. Environ Geochem Health; 2019 Feb 01; 41(1):43-52. PubMed ID: 29948534 [Abstract] [Full Text] [Related]
9. Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Xiao R, Wang P, Mi S, Ali A, Liu X, Li Y, Guan W, Li R, Zhang Z. Ecotoxicol Environ Saf; 2019 Oct 15; 181():155-163. PubMed ID: 31181386 [Abstract] [Full Text] [Related]
10. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Xu C, Chen HX, Xiang Q, Zhu HH, Wang S, Zhu QH, Huang DY, Zhang YZ. Environ Sci Pollut Res Int; 2018 Jan 15; 25(2):1147-1156. PubMed ID: 29079982 [Abstract] [Full Text] [Related]
11. Cadmium accumulation in rice straws and derived biochars as affected by metal exposure, soil types and rice genotypes. Shan A, Kang KJ, Xu H, Wu L, Lu M, Lin Q, Pan M, Wang G, He Z, Yang X. Int J Phytoremediation; 2022 Jan 15; 24(6):600-609. PubMed ID: 34388062 [Abstract] [Full Text] [Related]
13. The effects of H2O2- and HNO3/H2SO4-modified biochars on the resistance of acid paddy soil to acidification. He X, Hong ZN, Shi RY, Cui JQ, Lai HW, Lu HL, Xu RK. Environ Pollut; 2022 Jan 15; 293():118588. PubMed ID: 34843849 [Abstract] [Full Text] [Related]
14. Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Yang X, Pan H, Shaheen SM, Wang H, Rinklebe J. Environ Int; 2021 Nov 15; 156():106628. PubMed ID: 33991874 [Abstract] [Full Text] [Related]
15. Effects of biochars derived from four crop straws on a Cd-polluted cinnamon soil. Tong X, Song Q, Wang L, Hong Z, Dong Y, Jiang J. Environ Sci Pollut Res Int; 2023 Feb 15; 30(9):24764-24770. PubMed ID: 36692727 [Abstract] [Full Text] [Related]
16. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan G, Chen X, Zhang X, Liu D, Song Z, Liu X, Wang H. J Environ Manage; 2017 Jan 15; 186(Pt 2):285-292. PubMed ID: 27264699 [Abstract] [Full Text] [Related]
17. Cadmium long-term immobilization by biochar and potential risks in soils with different pH under combined aging. Meng Z, Huang S, Lin Z, Mu W, Ge H, Huang D. Sci Total Environ; 2022 Jun 15; 825():154018. PubMed ID: 35192823 [Abstract] [Full Text] [Related]
18. Does biochar affect the availability and chemical fractionation of phosphate in soils? Hong C, Lu S. Environ Sci Pollut Res Int; 2018 Mar 15; 25(9):8725-8734. PubMed ID: 29327187 [Abstract] [Full Text] [Related]
19. Pretreatment of straw using filamentous fungi improves the remediation effect of straw biochar on bivalent cadmium contaminated soil. Wang Q, Shao J, Shen L, Xiu J, Shan S, Ma K. Environ Sci Pollut Res Int; 2022 Aug 15; 29(40):60933-60944. PubMed ID: 35435554 [Abstract] [Full Text] [Related]
20. The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne. Li L, Jia Z, Ma H, Bao W, Li X, Tan H, Xu F, Xu H, Li Y. Environ Geochem Health; 2019 Oct 15; 41(5):2067-2080. PubMed ID: 30810981 [Abstract] [Full Text] [Related] Page: [Next] [New Search]