These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 3548825

  • 1. Mitochondrial respiratory control in the myocardium.
    Hassinen IE.
    Biochim Biophys Acta; 1986; 853(2):135-51. PubMed ID: 3548825
    [Abstract] [Full Text] [Related]

  • 2. Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart.
    Nishiki K, Erecińska M, Wilson DF.
    Am J Physiol; 1978 Mar; 234(3):C73-81. PubMed ID: 204195
    [Abstract] [Full Text] [Related]

  • 3. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis.
    Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OYu, Kuznetsov AV.
    Mol Cell Biochem; 1994 Mar; 133-134():155-92. PubMed ID: 7808453
    [Abstract] [Full Text] [Related]

  • 4. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE.
    Annu Rev Physiol; 1985 Mar; 47():707-25. PubMed ID: 3888084
    [Abstract] [Full Text] [Related]

  • 5. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH, Ala-Rämi A, Yan Y, Ingman P, Hassinen IE.
    J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421
    [Abstract] [Full Text] [Related]

  • 6. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW.
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [Abstract] [Full Text] [Related]

  • 7. Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system.
    Hassinen IE, Hiltunen K.
    Biochim Biophys Acta; 1975 Dec 11; 408(3):319-30. PubMed ID: 172132
    [Abstract] [Full Text] [Related]

  • 8. Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery.
    Seppet E, Eimre M, Peet N, Paju K, Orlova E, Ress M, Kõvask S, Piirsoo A, Saks VA, Gellerich FN, Zierz S, Seppet EK.
    Mol Cell Biochem; 2005 Feb 11; 270(1-2):49-61. PubMed ID: 15792353
    [Abstract] [Full Text] [Related]

  • 9. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches.
    Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U, Wallimann T, Aliev M, Vendelin M.
    Subcell Biochem; 2007 Feb 11; 46():27-65. PubMed ID: 18652071
    [Abstract] [Full Text] [Related]

  • 10. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA, Aliev MK.
    Biochem Biophys Res Commun; 1996 Oct 14; 227(2):360-7. PubMed ID: 8878521
    [Abstract] [Full Text] [Related]

  • 11. Heart failure: is there an energy deficit contributing to contractile dysfunction?
    Vogt AM, Kübler W.
    Basic Res Cardiol; 1998 Feb 14; 93(1):1-10. PubMed ID: 9538931
    [Abstract] [Full Text] [Related]

  • 12. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine.
    El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J.
    Am J Physiol; 1997 Apr 14; 272(4 Pt 2):H1615-24. PubMed ID: 9139943
    [Abstract] [Full Text] [Related]

  • 13. In silico studies on the sensitivity of myocardial PCr/ATP to changes in mitochondrial enzyme activity and oxygen concentration.
    Edwards LM, Ashrafian H, Korzeniewski B.
    Mol Biosyst; 2011 Dec 14; 7(12):3335-42. PubMed ID: 22025222
    [Abstract] [Full Text] [Related]

  • 14. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
    Zima AV, Kockskämper J, Mejia-Alvarez R, Blatter LA.
    J Physiol; 2003 Aug 01; 550(Pt 3):765-83. PubMed ID: 12824454
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC.
    J Physiol; 2007 Mar 15; 579(Pt 3):811-21. PubMed ID: 17185335
    [Abstract] [Full Text] [Related]

  • 17. [The role of long-chain acyl-CoA in the disturbances of oxidative phosphorylation in the myocardium].
    Borutaĭte VI, Mildazhene VIu, Ivanovene LI, Kholodenko BN, Toleĭkis AI, Prashkiavichius AK.
    Biokhimiia; 1989 Dec 15; 54(12):1947-51. PubMed ID: 2633800
    [Abstract] [Full Text] [Related]

  • 18. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.
    Ben Cheikh R, Guendouz A, Moravec J.
    Am J Physiol; 1994 May 15; 266(5 Pt 2):H2090-7. PubMed ID: 8203607
    [Abstract] [Full Text] [Related]

  • 19. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK, Saks VA.
    Biophys J; 1997 Jul 15; 73(1):428-45. PubMed ID: 9199806
    [Abstract] [Full Text] [Related]

  • 20. Cardiac nucleotide levels and mitochondrial respiration in copper-deficient rats.
    Chao JC, Medeiros DM, Altschuld RA, Hohl CM.
    Comp Biochem Physiol Comp Physiol; 1993 Jan 15; 104(1):163-8. PubMed ID: 8094656
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.