These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 35507007
1. Developing Metal-Binding Isosteres of 8-Hydroxyquinoline as Metalloenzyme Inhibitor Scaffolds. Seo H, Jackl MK, Kalaj M, Cohen SM. Inorg Chem; 2022 May 16; 61(19):7631-7641. PubMed ID: 35507007 [Abstract] [Full Text] [Related]
2. Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors. Dick BL, Cohen SM. Inorg Chem; 2018 Aug 06; 57(15):9538-9543. PubMed ID: 30009599 [Abstract] [Full Text] [Related]
3. Effect of heterocycle content on metal binding isostere coordination. Dick BL, Patel A, Cohen SM. Chem Sci; 2020 Jul 14; 11(26):6907-6914. PubMed ID: 33209243 [Abstract] [Full Text] [Related]
4. Evaluating Metal-Ligand Interactions of Metal-Binding Isosteres Using Model Complexes. Seo H, Prosser KE, Kalaj M, Karges J, Dick BL, Cohen SM. Inorg Chem; 2021 Nov 15; 60(22):17161-17172. PubMed ID: 34699201 [Abstract] [Full Text] [Related]
5. A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes. Cohen SM. Acc Chem Res; 2017 Aug 15; 50(8):2007-2016. PubMed ID: 28715203 [Abstract] [Full Text] [Related]
6. Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition. Jackl MK, Seo H, Karges J, Kalaj M, Cohen SM. Chem Sci; 2022 Feb 16; 13(7):2128-2136. PubMed ID: 35308862 [Abstract] [Full Text] [Related]
7. Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition. Adamek RN, Credille CV, Dick BL, Cohen SM. J Biol Inorg Chem; 2018 Oct 16; 23(7):1129-1138. PubMed ID: 30003339 [Abstract] [Full Text] [Related]
8. MeLAD: an integrated resource for metalloenzyme-ligand associations. Li G, Su Y, Yan YH, Peng JY, Dai QQ, Ning XL, Zhu CL, Fu C, McDonough MA, Schofield CJ, Huang C, Li GB. Bioinformatics; 2020 Feb 01; 36(3):904-909. PubMed ID: 31504189 [Abstract] [Full Text] [Related]
10. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors. Robinson SG, Burns PT, Miceli AM, Grice KA, Karver CE, Jin L. Dalton Trans; 2016 Jul 19; 45(29):11817-29. PubMed ID: 27373714 [Abstract] [Full Text] [Related]
11. Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores. Xiao YC, Yu JL, Dai QQ, Li G, Li GB. J Med Chem; 2021 Dec 23; 64(24):17706-17727. PubMed ID: 34875836 [Abstract] [Full Text] [Related]
12. Nitric oxide-donating and reactive oxygen species-responsive prochelators based on 8-hydroxyquinoline as anticancer agents. Zhang Y, Yang J, Meng T, Qin Y, Li T, Fu J, Yin J. Eur J Med Chem; 2021 Feb 15; 212():113153. PubMed ID: 33453603 [Abstract] [Full Text] [Related]
14. Recent Advances in the Synthesis and Biological Activity of 8-Hydroxyquinolines. Saadeh HA, Sweidan KA, Mubarak MS. Molecules; 2020 Sep 21; 25(18):. PubMed ID: 32967141 [Abstract] [Full Text] [Related]
16. Discovery of Novel Metalloenzyme Inhibitors Based on Property Characterization: Strategy and Application for HDAC1 Inhibitors. Zhang L, Yang Y, Yang Y, Xiao Z. Molecules; 2024 Feb 29; 29(5):. PubMed ID: 38474606 [Abstract] [Full Text] [Related]
17. Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease. Credille CV, Dick BL, Morrison CN, Stokes RW, Adamek RN, Wu NC, Wilson IA, Cohen SM. J Med Chem; 2018 Nov 21; 61(22):10206-10217. PubMed ID: 30351002 [Abstract] [Full Text] [Related]
18. Targeted 8-hydroxyquinoline fragment based small molecule drug discovery against neglected botulinum neurotoxin type F. Chauhan R, Chauhan V, Sonkar P, Vimal M, Dhaked RK. Bioorg Chem; 2019 Nov 21; 92():103297. PubMed ID: 31557621 [Abstract] [Full Text] [Related]