These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


303 related items for PubMed ID: 35508607

  • 21. Ni2+-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application.
    Yuan L, Jin Y, Wu H, Deng K, Qu B, Chen L, Hu Y, Liu RS.
    ACS Appl Mater Interfaces; 2022 Jan 26; 14(3):4265-4275. PubMed ID: 35025207
    [Abstract] [Full Text] [Related]

  • 22. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes.
    Nam S, Oh N, Zhai Y, Shim M.
    ACS Nano; 2015 Jan 27; 9(1):878-85. PubMed ID: 25565187
    [Abstract] [Full Text] [Related]

  • 23. A Colloidal-Quantum-Dot Integrated U-Shape Micro-Light-Emitting-Diode and Its Photonic Characteristics.
    Jao YM, Huang BM, Chang C, Lin FZ, Lee GY, Huang CP, Kuo HC, Shih MH, Lin CC.
    Nanomaterials (Basel); 2024 May 27; 14(11):. PubMed ID: 38869563
    [Abstract] [Full Text] [Related]

  • 24. Molecular surface programming of rectifying junctions between InAs colloidal quantum dot solids.
    Vafaie M, Morteza Najarian A, Xu J, Richter LJ, Li R, Zhang Y, Imran M, Xia P, Ban HW, Levina L, Singh A, Meitzner J, Pattantyus-Abraham AG, García de Arquer FP, Sargent EH.
    Proc Natl Acad Sci U S A; 2023 Oct 10; 120(41):e2305327120. PubMed ID: 37788308
    [Abstract] [Full Text] [Related]

  • 25. Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared.
    Mu G, Rao T, Zhang S, Wen C, Chen M, Hao Q, Tang X.
    ACS Appl Mater Interfaces; 2022 Oct 12; 14(40):45553-45561. PubMed ID: 36166596
    [Abstract] [Full Text] [Related]

  • 26. Light-controllable fiber interferometer utilizing photoexcitation dynamics in colloidal quantum dot.
    Gao F, Wang Y, Xu L, Feng Z, Wu Q, Zhang B, Liu J, Tang J, Tang M, Liu H, Fu S, Ruan Y, Ebendorff-Heidepriem H, Liu D.
    Opt Express; 2018 Feb 19; 26(4):3903-3914. PubMed ID: 29475247
    [Abstract] [Full Text] [Related]

  • 27. InSb/InP Core-Shell Colloidal Quantum Dots for Sensitive and Fast Short-Wave Infrared Photodetectors.
    Peng L, Wang Y, Ren Y, Wang Z, Cao P, Konstantatos G.
    ACS Nano; 2024 Feb 13; 18(6):5113-5121. PubMed ID: 38305195
    [Abstract] [Full Text] [Related]

  • 28. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes.
    Wang A, Shen H, Zang S, Lin Q, Wang H, Qian L, Niu J, Song Li L.
    Nanoscale; 2015 Feb 21; 7(7):2951-9. PubMed ID: 25588101
    [Abstract] [Full Text] [Related]

  • 29. Halide-Driven Synthetic Control of InSb Colloidal Quantum Dots Enables Short-Wave Infrared Photodetectors.
    Muhammad, Choi D, Parmar DH, Rehl B, Zhang Y, Atan O, Kim G, Xia P, Pina JM, Li M, Liu Y, Voznyy O, Hoogland S, Sargent EH.
    Adv Mater; 2023 Nov 21; 35(46):e2306147. PubMed ID: 37734861
    [Abstract] [Full Text] [Related]

  • 30. Silicon Surface Passivation for Silicon-Colloidal Quantum Dot Heterojunction Photodetectors.
    Xu Q, Cheong IT, Meng L, Veinot JGC, Wang X.
    ACS Nano; 2021 Nov 23; 15(11):18429-18436. PubMed ID: 34757719
    [Abstract] [Full Text] [Related]

  • 31. Colloidal quantum dot based solar cells: from materials to devices.
    Song JH, Jeong S.
    Nano Converg; 2017 Nov 23; 4(1):21. PubMed ID: 28835877
    [Abstract] [Full Text] [Related]

  • 32. Mixed Lead-Tin Halide Perovskites for Efficient and Wavelength-Tunable Near-Infrared Light-Emitting Diodes.
    Qiu W, Xiao Z, Roh K, Noel NK, Shapiro A, Heremans P, Rand BP.
    Adv Mater; 2019 Jan 23; 31(3):e1806105. PubMed ID: 30484911
    [Abstract] [Full Text] [Related]

  • 33. Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors.
    Hao Q, Ma H, Xing X, Tang X, Wei Z, Zhao X, Chen M.
    Materials (Basel); 2023 Nov 24; 16(23):. PubMed ID: 38068065
    [Abstract] [Full Text] [Related]

  • 34. Optimization of a Solution-Processed Quantum-Dot Light-Emitting-Diode with an Inverted Structure.
    Baek NH, Choi WS.
    J Nanosci Nanotechnol; 2019 Mar 01; 19(3):1420-1424. PubMed ID: 30469199
    [Abstract] [Full Text] [Related]

  • 35. Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes.
    Yang X, Ren F, Wang Y, Ding T, Sun H, Ma D, Sun XW.
    Sci Rep; 2017 Nov 07; 7(1):14741. PubMed ID: 29116136
    [Abstract] [Full Text] [Related]

  • 36. Extended Short-Wavelength Infrared Photoluminescence and Photocurrent of Nonstoichiometric Silver Telluride Colloidal Nanocrystals.
    Kim G, Choi D, Eom SY, Song H, Jeong KS.
    Nano Lett; 2021 Oct 13; 21(19):8073-8079. PubMed ID: 34524828
    [Abstract] [Full Text] [Related]

  • 37. One-Pot Colloidal Synthesis Enables Highly Tunable InSb Short-Wave Infrared Quantum Dots Exhibiting Carrier Multiplication.
    Mir WJ, Sheikh T, Nematulloev S, Maity P, Yorov KE, Emwas AH, Hedhili MN, Khan MS, Abulikemu M, Mohammed OF, Bakr OM.
    Small; 2024 May 13; 20(19):e2306535. PubMed ID: 38063843
    [Abstract] [Full Text] [Related]

  • 38. Carbon Nanotube Transistor with Colloidal Quantum Dot Photosensitive Gate for Ultrahigh External Quantum Efficiency Photodetector.
    Han J, Huang K, Su X, Xiao X, Gong X, Wang H, Cao J.
    ACS Nano; 2023 May 23; 17(10):9510-9520. PubMed ID: 37166009
    [Abstract] [Full Text] [Related]

  • 39. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices.
    Tang X, Chen M, Ackerman MM, Melnychuk C, Guyot-Sionnest P.
    Adv Mater; 2020 Mar 23; 32(9):e1906590. PubMed ID: 31957096
    [Abstract] [Full Text] [Related]

  • 40. Broadband Short-Wave Infrared-Emitting MgGa2O4:Cr3+, Ni2+ Phosphor with Near-Unity Internal Quantum Efficiency and High Thermal Stability for Light-Emitting Diode Applications.
    Miao S, Liang Y, Shi R, Wang W, Li Y, Wang XJ.
    ACS Appl Mater Interfaces; 2023 Jul 12; 15(27):32580-32588. PubMed ID: 37384930
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.