These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 35508753
1. High-level production of wild-type and oxidation-resistant recombinant alpha-1-antitrypsin in glycoengineered CHO cells. Koyuturk I, Kedia S, Robotham A, Star A, Brochu D, Sauvageau J, Kelly J, Gilbert M, Durocher Y. Biotechnol Bioeng; 2022 Sep; 119(9):2331-2344. PubMed ID: 35508753 [Abstract] [Full Text] [Related]
2. Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. Lalonde ME, Koyuturk I, Brochu D, Jabbour J, Gilbert M, Durocher Y. J Biotechnol; 2020 Jan 10; 307():87-97. PubMed ID: 31697975 [Abstract] [Full Text] [Related]
3. Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Amann T, Hansen AH, Kol S, Hansen HG, Arnsdorf J, Nallapareddy S, Voldborg B, Lee GM, Andersen MR, Kildegaard HF. Metab Eng; 2019 Mar 10; 52():143-152. PubMed ID: 30513349 [Abstract] [Full Text] [Related]
4. N-glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line. Blanchard V, Liu X, Eigel S, Kaup M, Rieck S, Janciauskiene S, Sandig V, Marx U, Walden P, Tauber R, Berger M. Biotechnol Bioeng; 2011 Sep 10; 108(9):2118-28. PubMed ID: 21495009 [Abstract] [Full Text] [Related]
5. Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments. Janciauskiene S, Welte T. Ann Am Thorac Soc; 2016 Aug 10; 13 Suppl 4():S280-8. PubMed ID: 27564662 [Abstract] [Full Text] [Related]
6. Glycoengineered recombinant alpha1-antitrypsin results in comparable in vitro and in vivo activities to human plasma-derived protein. Rocamora F, Schoffelen S, Arnsdorf J, Toth EA, Abdul Y, Cleveland TE, Bjørn SP, Wu MYM, McElvaney NG, Voldborg BGR, Fuerst TR, Lewis NE. bioRxiv; 2024 Mar 30. PubMed ID: 38585818 [Abstract] [Full Text] [Related]
7. Functional characterization of a SNP (F51S) found in human alpha 1-antitrypsin. Trinh HN, Jang SH, Lee C. Mol Genet Genomic Med; 2019 Aug 30; 7(8):e819. PubMed ID: 31251477 [Abstract] [Full Text] [Related]
8. Recombinant production of native human α-1-antitrypsin protein in the liver HepG2 cells. Jaberie H, Naghibalhossaini F. Biotechnol Lett; 2016 Oct 30; 38(10):1683-90. PubMed ID: 27314477 [Abstract] [Full Text] [Related]
9. N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Lee KJ, Lee SM, Gil JY, Kwon O, Kim JY, Park SJ, Chung HS, Oh DB. Glycoconj J; 2013 Jul 30; 30(5):537-47. PubMed ID: 23065139 [Abstract] [Full Text] [Related]
10. Therapy with plasma purified alpha1-antitrypsin (Prolastin®) induces time-dependent changes in plasma levels of MMP-9 and MPO. Koepke J, Dresel M, Schmid S, Greulich T, Beutel B, Schmeck B, Vogelmeier CF, Janciauskiene S, Koczulla AR. PLoS One; 2015 Jul 30; 10(1):e0117497. PubMed ID: 25635861 [Abstract] [Full Text] [Related]
11. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. Poulain A, Perret S, Malenfant F, Mullick A, Massie B, Durocher Y. J Biotechnol; 2017 Aug 10; 255():16-27. PubMed ID: 28625678 [Abstract] [Full Text] [Related]
12. The role of augmentation therapy in alpha-1 antitrypsin deficiency. Kueppers F. Curr Med Res Opin; 2011 Mar 10; 27(3):579-88. PubMed ID: 21226542 [Abstract] [Full Text] [Related]
13. Proteolytic and N-glycan processing of human α1-antitrypsin expressed in Nicotiana benthamiana. Castilho A, Windwarder M, Gattinger P, Mach L, Strasser R, Altmann F, Steinkellner H. Plant Physiol; 2014 Dec 10; 166(4):1839-51. PubMed ID: 25355867 [Abstract] [Full Text] [Related]
14. Alpha-1-antitrypsin augmentation therapy for alpha-1-antitrypsin deficiency. Hubbard RC, Crystal RG. Am J Med; 1988 Jun 24; 84(6A):52-62. PubMed ID: 3289387 [Abstract] [Full Text] [Related]
15. Development and analysis of alpha 1-antitrypsin neoglycoproteins: the impact of additional N-glycosylation sites on serum half-life. Lusch A, Kaup M, Marx U, Tauber R, Blanchard V, Berger M. Mol Pharm; 2013 Jul 01; 10(7):2616-29. PubMed ID: 23668542 [Abstract] [Full Text] [Related]
16. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Free Radic Biol Med; 2021 Feb 01; 163():10-30. PubMed ID: 33279618 [Abstract] [Full Text] [Related]
17. Combining Butyrated ManNAc with Glycoengineered CHO Cells Improves EPO Glycan Quality and Production. Wang Q, Chung CY, Yang W, Yang G, Chough S, Chen Y, Yin B, Bhattacharya R, Hu Y, Saeui CT, Yarema KJ, Betenbaugh MJ, Zhang H. Biotechnol J; 2019 Apr 01; 14(4):e1800186. PubMed ID: 30221828 [Abstract] [Full Text] [Related]
18. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Lin N, Mascarenhas J, Sealover NR, George HJ, Brooks J, Kayser KJ, Gau B, Yasa I, Azadi P, Archer-Hartmann S. Biotechnol Prog; 2015 Apr 01; 31(2):334-46. PubMed ID: 25641927 [Abstract] [Full Text] [Related]
19. Integrated Genome and Protein Editing Swaps α-2,6 Sialylation for α-2,3 Sialic Acid on Recombinant Antibodies from CHO. Chung CY, Wang Q, Yang S, Yin B, Zhang H, Betenbaugh M. Biotechnol J; 2017 Feb 01; 12(2):. PubMed ID: 27943633 [Abstract] [Full Text] [Related]
20. Additional N-glycosylation in the N-terminal region of recombinant human alpha-1 antitrypsin enhances the circulatory half-life in Sprague-Dawley rats. Chung HS, Kim JS, Lee SM, Park SJ. Glycoconj J; 2016 Apr 01; 33(2):201-8. PubMed ID: 26947874 [Abstract] [Full Text] [Related] Page: [Next] [New Search]