These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 35519059
1. High-sensitivity SERS based sensing on the labeling side of glass slides using low branched gold nanoparticles prepared with surfactant-free synthesis. Tezcan T, Hsu CH. RSC Adv; 2020 Sep 10; 10(56):34290-34298. PubMed ID: 35519059 [Abstract] [Full Text] [Related]
2. Bimetallic Gold Nanostars Having High Aspect Ratio Spikes for Sensitive Surface-Enhanced Raman Scattering Sensing. Atta S, Vo-Dinh T. ACS Appl Nano Mater; 2022 Sep 23; 5(9):12562-12570. PubMed ID: 36185168 [Abstract] [Full Text] [Related]
3. Rapid SERS assay for determination of the opioid fentanyl using silver-coated sharply branched gold nanostars. Atta S, Canning AJ, Vo-Dinh T. Mikrochim Acta; 2024 Jan 22; 191(2):110. PubMed ID: 38252139 [Abstract] [Full Text] [Related]
4. Solution-Based Ultra-Sensitive Surface-Enhanced Raman Scattering Detection of the Toxin Bacterial Biomarker Pyocyanin in Biological Fluids Using Sharp-Branched Gold Nanostars. Atta S, Vo-Dinh T. Anal Chem; 2023 Feb 07; 95(5):2690-2697. PubMed ID: 36693215 [Abstract] [Full Text] [Related]
5. A high sensitive assay platform based on surface-enhanced Raman scattering for quantification of protease activity. Yazgan NN, Boyaci IH, Temur E, Tamer U, Topcu A. Talanta; 2010 Jul 15; 82(2):631-9. PubMed ID: 20602947 [Abstract] [Full Text] [Related]
6. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y. Anal Bioanal Chem; 2009 Aug 15; 394(7):1747-60. PubMed ID: 19384546 [Abstract] [Full Text] [Related]
7. AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule. Lin CC, Chang CW. Biosens Bioelectron; 2014 Jan 15; 51():297-303. PubMed ID: 23978453 [Abstract] [Full Text] [Related]
8. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform. Bi L, Wang Y, Yang Y, Li Y, Mo S, Zheng Q, Chen L. ACS Appl Mater Interfaces; 2018 May 09; 10(18):15381-15387. PubMed ID: 29664282 [Abstract] [Full Text] [Related]
9. A new and facile route to prepare gold nanoparticle clusters on anodic aluminium oxide as a SERS substrate. Tezcan T, Boyaci IH. Talanta; 2021 Sep 01; 232():122426. PubMed ID: 34074412 [Abstract] [Full Text] [Related]
10. Branched Au Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Sensing of Intracellular pH and Extracellular pH Gradients. Zhao X, Campbell S, Wallace GQ, Claing A, Bazuin CG, Masson JF. ACS Sens; 2020 Jul 24; 5(7):2155-2167. PubMed ID: 32515184 [Abstract] [Full Text] [Related]
11. Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing. Singha SS, Mondal S, Bhattacharya TS, Das L, Sen K, Satpati B, Das K, Singha A. Biosens Bioelectron; 2018 Nov 15; 119():10-17. PubMed ID: 30098461 [Abstract] [Full Text] [Related]
12. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A, Szymborski T, Jaroch T, Zmysłowski A, Szterk A. Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():208-217. PubMed ID: 29519430 [Abstract] [Full Text] [Related]
13. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Fan W, Lee YH, Pedireddy S, Zhang Q, Liu T, Ling XY. Nanoscale; 2014 May 07; 6(9):4843-51. PubMed ID: 24664184 [Abstract] [Full Text] [Related]
14. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection. Chen S, Li Q, Tian D, Ke P, Yang X, Wu Q, Chen J, Hu C, Ji H. Spectrochim Acta A Mol Biomol Spectrosc; 2022 May 15; 273():121030. PubMed ID: 35189488 [Abstract] [Full Text] [Related]
15. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing. Huang J, Ma D, Chen F, Bai M, Xu K, Zhao Y. Anal Chem; 2015 Oct 20; 87(20):10527-34. PubMed ID: 26406111 [Abstract] [Full Text] [Related]
16. Synthesis of Gold Nanoparticle Stabilized on Silicon Nanocrystal Containing Polymer Microspheres as Effective Surface-Enhanced Raman Scattering (SERS) Substrates. Zhu G, Cheng L, Liu G, Zhu L. Nanomaterials (Basel); 2020 Jul 31; 10(8):. PubMed ID: 32751785 [Abstract] [Full Text] [Related]
17. Gold-Trisoctahedra-Coated Capillary-Based SERS Platform for Microsampling and Sensitive Detection of Trace Fentanyl. Zhang M, Pan J, Xu X, Fu G, Zhang L, Sun P, Yan X, Liu F, Wang C, Liu X, Lu G. Anal Chem; 2022 Mar 22; 94(11):4850-4858. PubMed ID: 35258921 [Abstract] [Full Text] [Related]
18. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C, Wu X, Dong P, Chen J, Xiao R. Biosens Bioelectron; 2016 Dec 15; 86():944-950. PubMed ID: 27498319 [Abstract] [Full Text] [Related]
19. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes. Liu Y, Tian H, Chen X, Liu W, Xia K, Huang J, de la Chapelle ML, Huang G, Zhang Y, Fu W. Mikrochim Acta; 2020 Feb 10; 187(3):160. PubMed ID: 32040773 [Abstract] [Full Text] [Related]
20. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate. Buja OM, Gordan OD, Leopold N, Morschhauser A, Nestler J, Zahn DR. Beilstein J Nanotechnol; 2017 Feb 10; 8():237-243. PubMed ID: 28243562 [Abstract] [Full Text] [Related] Page: [Next] [New Search]