These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1057 related items for PubMed ID: 35525740

  • 21. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
    Shao H, Yang X, He Y, Fu J, Liu L, Ma L, Zhang L, Yang G, Gao C, Gou Z.
    Biofabrication; 2015 Sep 10; 7(3):035010. PubMed ID: 26355654
    [Abstract] [Full Text] [Related]

  • 22. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes.
    Yazdanpanah Z, Sharma NK, Raquin A, Cooper DML, Chen X, Johnston JD.
    Biomed Eng Online; 2023 Jul 20; 22(1):73. PubMed ID: 37474951
    [Abstract] [Full Text] [Related]

  • 23. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds.
    Seyedsalehi A, Daneshmandi L, Barajaa M, Riordan J, Laurencin CT.
    Sci Rep; 2020 Dec 17; 10(1):22210. PubMed ID: 33335152
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications.
    Barbosa TV, Dernowsek JA, Tobar RJR, Casali BC, Fortulan CA, Ferreira EB, Selistre-de-Araújo HS, Branciforti MC.
    Biomed Mater; 2022 Aug 22; 17(5):. PubMed ID: 35948004
    [Abstract] [Full Text] [Related]

  • 26. Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering.
    Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, Tahriri M, Jazayeri HE, Tayebi L.
    Mater Sci Eng C Mater Biol Appl; 2017 Jan 01; 70(Pt 1):586-598. PubMed ID: 27770931
    [Abstract] [Full Text] [Related]

  • 27. Fabrication and evaluation of a chitin whisker/poly(L-lactide) composite scaffold by the direct trisolvent-ink writing method for bone tissue engineering.
    Liu K, Zhu L, Tang S, Wen W, Lu L, Liu M, Zhou C, Luo B.
    Nanoscale; 2020 Sep 17; 12(35):18225-18239. PubMed ID: 32856644
    [Abstract] [Full Text] [Related]

  • 28. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering.
    Ansari MAA, Makwana P, Dhimmar B, Vasita R, Jain PK, Nanda HS.
    J Mater Chem B; 2024 Jul 17; 12(28):6886-6904. PubMed ID: 38912967
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Evaluation of 'surgery-friendly' bone scaffold characteristics: 3D printed ductile BG/PCL scaffold with high inorganic content to repair critical bone defects.
    Huang P, Yang P, Liu K, Tao W, Tao J, Ai F.
    Biomed Mater; 2022 Dec 15; 18(1):. PubMed ID: 36317271
    [Abstract] [Full Text] [Related]

  • 32. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.
    Poh PS, Hutmacher DW, Stevens MM, Woodruff MA.
    Biofabrication; 2013 Dec 15; 5(4):045005. PubMed ID: 24192136
    [Abstract] [Full Text] [Related]

  • 33. 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating.
    Ghosh S, Yadav A, Rani S, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK.
    Langmuir; 2023 Feb 07; 39(5):1927-1946. PubMed ID: 36701663
    [Abstract] [Full Text] [Related]

  • 34. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE, El-Kamel AH, Essawy MM, Abdelfattah EA, Eltaher HM.
    Biomater Sci; 2021 Jun 07; 9(11):4019-4039. PubMed ID: 33899858
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
    Li JL, Cai YL, Guo YL, Fuh JY, Sun J, Hong GS, Lam RN, Wong YS, Wang W, Tay BY, Thian ES.
    J Biomed Mater Res B Appl Biomater; 2014 May 07; 102(4):651-8. PubMed ID: 24155124
    [Abstract] [Full Text] [Related]

  • 37. Osteoregenerative Potential of 3D-Printed Poly ε-Caprolactone Tissue Scaffolds In Vitro Using Minimally Manipulative Expansion of Primary Human Bone Marrow Stem Cells.
    Lawrence LM, Salary RR, Miller V, Valluri A, Denning KL, Case-Perry S, Abdelgaber K, Smith S, Claudio PP, Day JB.
    Int J Mol Sci; 2023 Mar 03; 24(5):. PubMed ID: 36902373
    [Abstract] [Full Text] [Related]

  • 38. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix<sup/>.
    Nyberg E, Rindone A, Dorafshar A, Grayson WL.
    Tissue Eng Part A; 2017 Jun 03; 23(11-12):503-514. PubMed ID: 28027692
    [Abstract] [Full Text] [Related]

  • 39. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X, Du X, Li D, Ao R, Yu B, Yu B.
    J Biomater Sci Polym Ed; 2018 Oct 03; 29(14):1686-1700. PubMed ID: 29768120
    [Abstract] [Full Text] [Related]

  • 40. Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink.
    Jing L, Wang X, Liu H, Lu Y, Bian J, Sun J, Huang D.
    ACS Appl Mater Interfaces; 2018 Jun 06; 10(22):18551-18559. PubMed ID: 29763548
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 53.