These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 35577782
1. IGF-1 release in the medial prefrontal cortex mediates the rapid and sustained antidepressant-like actions of ketamine. Deyama S, Kondo M, Shimada S, Kaneda K. Transl Psychiatry; 2022 May 17; 12(1):178. PubMed ID: 35577782 [Abstract] [Full Text] [Related]
2. Intranasal Administration of Resolvin E1 Produces Antidepressant-Like Effects via BDNF/VEGF-mTORC1 Signaling in the Medial Prefrontal Cortex. Deyama S, Aoki S, Sugie R, Fukuda H, Shuto S, Minami M, Kaneda K. Neurotherapeutics; 2023 Mar 17; 20(2):484-501. PubMed ID: 36622634 [Abstract] [Full Text] [Related]
3. The duration of the antidepressant-like effects of a single infusion of brain-derived neurotrophic factor into the medial prefrontal cortex in mice. Deyama S, Kaneda K. Behav Brain Res; 2020 Sep 15; 394():112844. PubMed ID: 32745661 [Abstract] [Full Text] [Related]
4. Medial PFC AMPA receptor and BDNF signaling are required for the rapid and sustained antidepressant-like effects of 5-HT1A receptor stimulation. Fukumoto K, Fogaça MV, Liu RJ, Duman CH, Li XY, Chaki S, Duman RS. Neuropsychopharmacology; 2020 Sep 15; 45(10):1725-1734. PubMed ID: 32396921 [Abstract] [Full Text] [Related]
5. Antidepressant-like effects of tomatidine and tomatine, steroidal alkaloids from unripe tomatoes, via activation of mTORC1 in the medial prefrontal cortex in lipopolysaccharide-induced depression model mice. Deyama S, Sugie R, Tabata M, Kaneda K. Nutr Neurosci; 2024 Aug 15; 27(8):795-808. PubMed ID: 37704369 [Abstract] [Full Text] [Related]
6. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Fukumoto K, Fogaça MV, Liu RJ, Duman C, Kato T, Li XY, Duman RS. Proc Natl Acad Sci U S A; 2019 Jan 02; 116(1):297-302. PubMed ID: 30559184 [Abstract] [Full Text] [Related]
7. BDNF release and signaling are required for the antidepressant actions of GLYX-13. Kato T, Fogaça MV, Deyama S, Li XY, Fukumoto K, Duman RS. Mol Psychiatry; 2018 Oct 02; 23(10):2007-2017. PubMed ID: 29203848 [Abstract] [Full Text] [Related]
8. Neurotrophic and Antidepressant Actions of Brain-Derived Neurotrophic Factor Require Vascular Endothelial Growth Factor. Deyama S, Bang E, Kato T, Li XY, Duman RS. Biol Psychiatry; 2019 Jul 15; 86(2):143-152. PubMed ID: 30712809 [Abstract] [Full Text] [Related]
9. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Deyama S, Duman RS. Pharmacol Biochem Behav; 2020 Jan 15; 188():172837. PubMed ID: 31830487 [Abstract] [Full Text] [Related]
10. Cortical and raphe GABAA, AMPA receptors and glial GLT-1 glutamate transporter contribute to the sustained antidepressant activity of ketamine. Pham TH, Defaix C, Nguyen TML, Mendez-David I, Tritschler L, David DJ, Gardier AM. Pharmacol Biochem Behav; 2020 May 15; 192():172913. PubMed ID: 32201299 [Abstract] [Full Text] [Related]
11. Role of Neuronal VEGF Signaling in the Prefrontal Cortex in the Rapid Antidepressant Effects of Ketamine. Deyama S, Bang E, Wohleb ES, Li XY, Kato T, Gerhard DM, Dutheil S, Dwyer JM, Taylor SR, Picciotto MR, Duman RS. Am J Psychiatry; 2019 May 01; 176(5):388-400. PubMed ID: 30606046 [Abstract] [Full Text] [Related]
12. [Elucidation of the Mechanisms Underlying the Rapid Antidepressant Actions of Ketamine and Search for Possible Candidates for Novel Rapid-acting Antidepressants]. Deyama S. Yakugaku Zasshi; 2023 May 01; 143(9):713-720. PubMed ID: 37661437 [Abstract] [Full Text] [Related]
13. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Yao W, Cao Q, Luo S, He L, Yang C, Chen J, Qi Q, Hashimoto K, Zhang JC. Mol Psychiatry; 2022 Mar 01; 27(3):1618-1629. PubMed ID: 34819637 [Abstract] [Full Text] [Related]
14. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Deyama S, Kaneda K. Neuropharmacology; 2023 Feb 15; 224():109335. PubMed ID: 36403852 [Abstract] [Full Text] [Related]
16. AMPA Receptor Activation-Independent Antidepressant Actions of Ketamine Metabolite (S)-Norketamine. Yang C, Kobayashi S, Nakao K, Dong C, Han M, Qu Y, Ren Q, Zhang JC, Ma M, Toki H, Yamaguchi JI, Chaki S, Shirayama Y, Nakazawa K, Manabe T, Hashimoto K. Biol Psychiatry; 2018 Oct 15; 84(8):591-600. PubMed ID: 29945718 [Abstract] [Full Text] [Related]
17. Sigma-1 receptor activation mediates the sustained antidepressant effect of ketamine in mice via increasing BDNF levels. Ma H, Li JF, Qiao X, Zhang Y, Hou XJ, Chang HX, Chen HL, Zhang Y, Li YF. Acta Pharmacol Sin; 2024 Apr 15; 45(4):704-713. PubMed ID: 38097715 [Abstract] [Full Text] [Related]
18. The mood stabilizer lithium potentiates the antidepressant-like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Chiu CT, Scheuing L, Liu G, Liao HM, Linares GR, Lin D, Chuang DM. Int J Neuropsychopharmacol; 2014 Dec 28; 18(6):. PubMed ID: 25548109 [Abstract] [Full Text] [Related]
19. BDNF release is required for the behavioral actions of ketamine. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. Int J Neuropsychopharmacol; 2014 Oct 31; 18(1):. PubMed ID: 25539510 [Abstract] [Full Text] [Related]
20. 5-HT1A receptor stimulation in the medial prefrontal cortex mediates the antidepressant effects of mGlu2/3 receptor antagonist in mice. Fukumoto K, Iijima M, Funakoshi T, Chaki S. Neuropharmacology; 2018 Jul 15; 137():96-103. PubMed ID: 29738849 [Abstract] [Full Text] [Related] Page: [Next] [New Search]