These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


358 related items for PubMed ID: 35596612

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Spin-Orbit Torque in Van der Waals-Layered Materials and Heterostructures.
    Tang W, Liu H, Li Z, Pan A, Zeng YJ.
    Adv Sci (Weinh); 2021 Sep; 8(18):e2100847. PubMed ID: 34323390
    [Abstract] [Full Text] [Related]

  • 6. van der Waals Layered Materials: Opportunities and Challenges.
    Duong DL, Yun SJ, Lee YH.
    ACS Nano; 2017 Dec 26; 11(12):11803-11830. PubMed ID: 29219304
    [Abstract] [Full Text] [Related]

  • 7. Magnetic Proximity Effect in Graphene/CrBr3 van der Waals Heterostructures.
    Tang C, Zhang Z, Lai S, Tan Q, Gao WB.
    Adv Mater; 2020 Apr 26; 32(16):e1908498. PubMed ID: 32130750
    [Abstract] [Full Text] [Related]

  • 8. Layer-Dependent Magnetism and Spin Fluctuations in Atomically Thin van der Waals Magnet CrPS4.
    Huang M, Green JC, Zhou J, Williams V, Li S, Lu H, Djugba D, Wang H, Flebus B, Ni N, Du CR.
    Nano Lett; 2023 Sep 13; 23(17):8099-8105. PubMed ID: 37656017
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures.
    Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L, Han J.
    Adv Mater; 2020 Sep 13; 32(38):e2002032. PubMed ID: 32803805
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Layer-resolved magnetic proximity effect in van der Waals heterostructures.
    Zhong D, Seyler KL, Linpeng X, Wilson NP, Taniguchi T, Watanabe K, McGuire MA, Fu KC, Xiao D, Yao W, Xu X.
    Nat Nanotechnol; 2020 Mar 13; 15(3):187-191. PubMed ID: 31988503
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework.
    Boix-Constant C, García-López V, Navarro-Moratalla E, Clemente-León M, Zafra JL, Casado J, Guinea F, Mañas-Valero S, Coronado E.
    Adv Mater; 2022 Mar 13; 34(11):e2110027. PubMed ID: 35032055
    [Abstract] [Full Text] [Related]

  • 15. Strain-Driven Zero-Field Near-10 nm Skyrmions in Two-Dimensional van der Waals Heterostructures.
    Li D, Haldar S, Heinze S.
    Nano Lett; 2022 Sep 28; 22(18):7706-7713. PubMed ID: 36121771
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Controllable Magnetic Proximity Effect and Charge Transfer in 2D Semiconductor and Double-Layered Perovskite Manganese Oxide van der Waals Heterostructure.
    Zhang Y, Shinokita K, Watanabe K, Taniguchi T, Goto M, Kan D, Shimakawa Y, Moritomo Y, Nishihara T, Miyauchi Y, Matsuda K.
    Adv Mater; 2020 Dec 28; 32(50):e2003501. PubMed ID: 33118213
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Understanding and tuning magnetism in van der Waals-type metal thiophosphates.
    Basnet R, Hu J.
    Nanoscale; 2024 Aug 29; 16(34):15851-15883. PubMed ID: 39129678
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.