These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 35603444
1. Electrocommunication signals and aggressive behavior vary among male morphs in an apteronotid fish, Compsaraia samueli. Freiler MK, Proffitt MR, Smith GT. J Exp Biol; 2022 Jun 15; 225(12):. PubMed ID: 35603444 [Abstract] [Full Text] [Related]
2. Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae). Smith GT. J Exp Biol; 2013 Jul 01; 216(Pt 13):2421-33. PubMed ID: 23761467 [Abstract] [Full Text] [Related]
3. Androgens regulate sex differences in signaling but are not associated with male variation in morphology in the weakly electric fish Parapteronotus hasemani. Petzold JM, Smith GT. Horm Behav; 2016 Feb 01; 78():67-71. PubMed ID: 26518663 [Abstract] [Full Text] [Related]
4. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii. Zhou M, Smith GT. J Exp Biol; 2006 Dec 01; 209(Pt 23):4809-18. PubMed ID: 17114413 [Abstract] [Full Text] [Related]
5. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). Turner CR, Derylo M, de Santana CD, Alves-Gomes JA, Smith GT. J Exp Biol; 2007 Dec 01; 210(Pt 23):4104-22. PubMed ID: 18025011 [Abstract] [Full Text] [Related]
6. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny. Smith AR, Proffitt MR, Ho WW, Mullaney CB, Maldonado-Ocampo JA, Lovejoy NR, Alves-Gomes JA, Smith GT. J Physiol Paris; 2016 Oct 01; 110(3 Pt B):302-313. PubMed ID: 27769924 [Abstract] [Full Text] [Related]
7. Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus. Dunlap KD, Pelczar PL, Knapp R. Horm Behav; 2002 Sep 01; 42(2):97-108. PubMed ID: 12367563 [Abstract] [Full Text] [Related]
8. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus. Hupé GJ, Lewis JE. J Exp Biol; 2008 May 01; 211(Pt 10):1657-67. PubMed ID: 18456893 [Abstract] [Full Text] [Related]
9. Sex differences in the electrocommunication signals of the electric fish Apteronotus bonapartii. Ho WW, Fernandes CC, Alves-Gomes JA, Smith GT. Ethology; 2010 Nov 01; 116(11):1050-1064. PubMed ID: 20953311 [Abstract] [Full Text] [Related]
10. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae). Petzold JM, Marsat G, Smith GT. J Physiol Paris; 2016 Oct 01; 110(3 Pt B):200-215. PubMed ID: 27989653 [Abstract] [Full Text] [Related]
11. Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. Bastian J, Schniederjan S, Nguyenkim J. J Exp Biol; 2001 Jun 01; 204(Pt 11):1909-23. PubMed ID: 11441033 [Abstract] [Full Text] [Related]
12. Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Dunlap KD. Horm Behav; 2002 Mar 01; 41(2):187-94. PubMed ID: 11855903 [Abstract] [Full Text] [Related]
13. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Smith GT, Combs N. Horm Behav; 2008 Jun 01; 54(1):69-82. PubMed ID: 18336816 [Abstract] [Full Text] [Related]
14. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function. Kolodziejski JA, Sanford SE, Smith GT. J Exp Biol; 2007 Jul 01; 210(Pt 14):2501-9. PubMed ID: 17601954 [Abstract] [Full Text] [Related]
15. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. Dunlap KD, Thomas P, Zakon HH. J Comp Physiol A; 1998 Jul 01; 183(1):77-86. PubMed ID: 9691480 [Abstract] [Full Text] [Related]
16. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus. Hupé GJ, Lewis JE, Benda J. J Physiol Paris; 2008 Jul 01; 102(4-6):164-72. PubMed ID: 18984046 [Abstract] [Full Text] [Related]
17. Divergence in androgen sensitivity contributes to population differences in sexual dimorphism of electrocommunication behavior. Ho WW, Rack JM, Smith GT. Horm Behav; 2013 Jan 01; 63(1):49-53. PubMed ID: 23142327 [Abstract] [Full Text] [Related]
18. Distinctive mechanisms underlie the emission of social electric signals of submission in Gymnotus omarorum. Comas V, Langevin K, Silva A, Borde M. J Exp Biol; 2019 Jun 11; 222(Pt 11):. PubMed ID: 31085603 [Abstract] [Full Text] [Related]
19. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Telgkamp P, Combs N, Smith GT. Dev Neurobiol; 2007 Feb 15; 67(3):339-54. PubMed ID: 17443792 [Abstract] [Full Text] [Related]
20. Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish. Carlson BA, Hopkins CD, Thomas P. Horm Behav; 2000 Nov 15; 38(3):177-86. PubMed ID: 11038292 [Abstract] [Full Text] [Related] Page: [Next] [New Search]