These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 35612408

  • 1. Activatable molecular rotor based on bithiophene quinolinium toward viscosity detection in liquids.
    Xu L, Zhao J, Xiong F, Huang Y, Sui Y.
    Anal Methods; 2022 Jun 09; 14(22):2204-2211. PubMed ID: 35612408
    [Abstract] [Full Text] [Related]

  • 2. Triphenylamine indanedione as an AIE-based molecular sensor with one-step facile synthesis toward viscosity detection of liquids.
    Xu L, Xiong F, Kang M, Huang Y, Wu K.
    Analyst; 2022 Sep 12; 147(18):4132-4140. PubMed ID: 35971980
    [Abstract] [Full Text] [Related]

  • 3. Sustainable natural chlorogenic acid as a functional molecular sensor toward viscosity detection in liquids.
    Xu L, Xu W, Tian Z, Deng F, Huang Y.
    Photochem Photobiol Sci; 2023 Jun 12; 22(6):1245-1255. PubMed ID: 36694012
    [Abstract] [Full Text] [Related]

  • 4. Caffeic acid, a natural extract, as an activatable molecular probe for viscosity detection in a liquid system.
    Xu L, Zhong M, Tian Z, Zeng H, Huang Y.
    RSC Adv; 2023 Nov 30; 13(50):35209-35215. PubMed ID: 38053681
    [Abstract] [Full Text] [Related]

  • 5. Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids.
    Xu L, Huang Y, Peng H, Xu W, Yi X, He G.
    ACS Omega; 2023 Apr 11; 8(14):13213-13221. PubMed ID: 37065079
    [Abstract] [Full Text] [Related]

  • 6. Visual detection of viscosity through activatable molecular rotor with aggregation-induced emission.
    Xu L, Wu K, Han R, Sui Y, Huang C, Huang W, Liu L.
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov 15; 261():120016. PubMed ID: 34091356
    [Abstract] [Full Text] [Related]

  • 7. Utilization of photo-luminescent technique toward viscosity detection in the liquid food system with triphenylamine-michaelitic acid molecular sensor.
    Xu L, Peng H, Ma G, Huang Y.
    J Food Sci Technol; 2023 May 15; 60(5):1570-1579. PubMed ID: 37033306
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. A near-infrared fluorescent molecular rotor for viscosity detection in biosystem and fluid beverages.
    Wang A, Shu W, Wang Y, Liu K, Yu S, Zhang Y, Wang K, Li D, Sun Z, Sun X, Xiao H.
    Food Chem; 2025 Jan 15; 463(Pt 4):141458. PubMed ID: 39362090
    [Abstract] [Full Text] [Related]

  • 10. Turn-on mode probe based on the sustainable xanthohumol extract for the efficient viscosity response in a liquid system.
    Xu L, Liu X, Zhao J, Deng X, Peng H.
    RSC Adv; 2024 May 28; 14(25):17824-17831. PubMed ID: 38836167
    [Abstract] [Full Text] [Related]

  • 11. Green extract rosemary acid as a viscosity-sensitive molecular sensor in liquid systems.
    Xu L, Peng H, Huang Y, Huang C, Xie C, He G.
    Anal Methods; 2023 Apr 13; 15(15):1881-1887. PubMed ID: 36974992
    [Abstract] [Full Text] [Related]

  • 12. A deep-red emission fluorescent probe with long wavelength absorption for viscosity detection and live cell imaging.
    Chen L, Feng Y, Dang Y, Zhong C, Chen D.
    Anal Bioanal Chem; 2020 Nov 13; 412(28):7819-7826. PubMed ID: 32875370
    [Abstract] [Full Text] [Related]

  • 13. Facile mitochondria localized fluorescent probe for viscosity detection in living cells.
    Sun M, Wang T, Yang X, Yu H, Wang S, Huang D.
    Talanta; 2021 Apr 01; 225():121996. PubMed ID: 33592743
    [Abstract] [Full Text] [Related]

  • 14. Environment-sensitive behavior of fluorescent molecular rotors.
    Haidekker MA, Theodorakis EA.
    J Biol Eng; 2010 Sep 15; 4():11. PubMed ID: 20843326
    [Abstract] [Full Text] [Related]

  • 15. Solvent viscosity induces twisted intramolecular charge transfer state lifetime tunable of Thioflavin-T.
    Li Y, Liu X, Han J, Cao B, Sun C, Diao L, Yin H, Shi Y.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov 05; 222():117244. PubMed ID: 31203054
    [Abstract] [Full Text] [Related]

  • 16. Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents.
    Stsiapura VI, Maskevich AA, Tikhomirov SA, Buganov OV.
    J Phys Chem A; 2010 Aug 19; 114(32):8345-50. PubMed ID: 20666477
    [Abstract] [Full Text] [Related]

  • 17. A deep-red fluorescent molecular rotor based on donor-two-acceptor modular system for imaging mitochondrial viscosity.
    Yin X, Cai Y, Cai S, Jiao X, Liu C, He S, Zeng X.
    RSC Adv; 2020 Aug 17; 10(51):30825-30831. PubMed ID: 35516013
    [Abstract] [Full Text] [Related]

  • 18. Highly tunable bimane-based fluorescent probes: design, synthesis, and application as a selective amyloid binding dye.
    Venkatesh Y, Marotta NP, Lee VM, Petersson EJ.
    Chem Sci; 2024 Apr 24; 15(16):6053-6063. PubMed ID: 38665526
    [Abstract] [Full Text] [Related]

  • 19. An ultra-sensitive near-infrared fluorescent probe based on triphenylamine with high selectivity detecting the keratin.
    Liu M, Cao J, Tu Y, Huang C, Zhang M, Zheng J.
    Anal Biochem; 2022 Jun 01; 646():114638. PubMed ID: 35278436
    [Abstract] [Full Text] [Related]

  • 20. Ultrafast Torsional Relaxation of Thioflavin-T in Tris(pentafluoroethyl)trifluorophosphate (FAP) Anion-Based Ionic Liquids.
    Singh PK, Mora AK, Nath S.
    J Phys Chem B; 2015 Nov 05; 119(44):14252-60. PubMed ID: 26457972
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.