These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 35628591
41. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. Yıldız M, Terzi H. Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907 [Abstract] [Full Text] [Related]
43. Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L. Xiong JL, Ma N. Int J Mol Sci; 2022 Dec 04; 23(23):. PubMed ID: 36499633 [Abstract] [Full Text] [Related]
44. Proteome Changes Reveal the Protective Roles of Exogenous Citric Acid in Alleviating Cu Toxicity in Brassica napus L. Ju YH, Roy SK, Roy Choudhury A, Kwon SJ, Choi JY, Rahman MA, Katsube-Tanaka T, Shiraiwa T, Lee MS, Cho K, Woo SH. Int J Mol Sci; 2021 May 30; 22(11):. PubMed ID: 34070927 [Abstract] [Full Text] [Related]
45. Transcriptome Profile Analysis of Winter Rapeseed (Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Int J Mol Sci; 2019 Jun 05; 20(11):. PubMed ID: 31195741 [Abstract] [Full Text] [Related]
50. Different irrigation and nitrogen fertilizer treatments on some agro-physiologic traits in rapeseed (Brassica napus L.). Daneshvar M, Sarvestani ZT, Sanavy SA. Pak J Biol Sci; 2008 Jun 15; 11(12):1530-40. PubMed ID: 18819639 [Abstract] [Full Text] [Related]
52. An adaptive spacing of root-zone hole fertilization to improve production and fertilizer utilization of rapeseed. Chen H, Liu W, Gao L, Liao Y, Li Q, Liao Q. J Sci Food Agric; 2024 Aug 15; 104(10):6276-6288. PubMed ID: 38477353 [Abstract] [Full Text] [Related]
56. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. Chu P, Yan GX, Yang Q, Zhai LN, Zhang C, Zhang FQ, Guan RZ. J Proteomics; 2015 Jan 15; 113():244-59. PubMed ID: 25317966 [Abstract] [Full Text] [Related]
57. Overexpression of BraLTP2, a Lipid Transfer Protein of Brassica napus, Results in Increased Trichome Density and Altered Concentration of Secondary Metabolites. Tian N, Liu F, Wang P, Yan X, Gao H, Zeng X, Wu G. Int J Mol Sci; 2018 Jun 12; 19(6):. PubMed ID: 29895724 [Abstract] [Full Text] [Related]
58. Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). Zhang F, Xiao X, Wu X. Ecotoxicol Environ Saf; 2020 Jul 01; 197():110613. PubMed ID: 32304923 [Abstract] [Full Text] [Related]
59. Integrated BSA-seq and RNA-seq analysis to identify candidate genes associated with nitrogen utilization efficiency (NUtE) in rapeseed (Brassica napus L.). Nan Y, Xie Y, He H, Wu H, Gao L, Atif A, Zhang Y, Tian H, Hui J, Gao Y. Int J Biol Macromol; 2024 Jan 01; 254(Pt 1):127771. PubMed ID: 38287600 [Abstract] [Full Text] [Related]
60. In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus. Gauthier PP, Bligny R, Gout E, Mahé A, Nogués S, Hodges M, Tcherkez GG. New Phytol; 2010 Mar 01; 185(4):988-99. PubMed ID: 20070539 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]