These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 35628591
61. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Vuorinen AL, Kalpio M, Linderborg KM, Kortesniemi M, Lehto K, Niemi J, Yang B, Kallio HP. Food Chem; 2014 Feb 15; 145():664-73. PubMed ID: 24128529 [Abstract] [Full Text] [Related]
62. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. Rossato L, MacDuff JH, Laine P, Le Deunff E, Ourry A. J Exp Bot; 2002 May 15; 53(371):1131-41. PubMed ID: 11971924 [Abstract] [Full Text] [Related]
67. [Effects of nitrogen application on yield and nitrogen use efficiency of rapeseed (Brassica napus)]. Zou XY, Liu BL, Song LQ, Guan CY. Ying Yong Sheng Tai Xue Bao; 2016 Apr 22; 27(4):1169-1176. PubMed ID: 29732773 [Abstract] [Full Text] [Related]
68. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves. Jia H, Shao M, He Y, Guan R, Chu P, Jiang H. PLoS One; 2015 Apr 22; 10(12):e0144808. PubMed ID: 26691228 [Abstract] [Full Text] [Related]
69. An Integrated Analysis of the Rice Transcriptome and Metabolome Reveals Root Growth Regulation Mechanisms in Response to Nitrogen Availability. Xin W, Zhang L, Zhang W, Gao J, Yi J, Zhen X, Du M, Zhao Y, Chen L. Int J Mol Sci; 2019 Nov 24; 20(23):. PubMed ID: 31771277 [Abstract] [Full Text] [Related]
70. Untargeted LC-MS-based metabolomics revealed specific metabolic changes in cotyledons and roots of Ricinus communis during early seedling establishment under salt stress. Wang Y, Liu J, Yang F, Zhou W, Mao S, Lin J, Yan X. Plant Physiol Biochem; 2021 Jun 24; 163():108-118. PubMed ID: 33826995 [Abstract] [Full Text] [Related]
71. Exogenous GABA promotes adaptation and growth by altering the carbon and nitrogen metabolic flux in poplar seedlings under low nitrogen conditions. Chen W, Meng C, Ji J, Li MH, Zhang X, Wu Y, Xie T, Du C, Sun J, Jiang Z, Shi S. Tree Physiol; 2020 Dec 05; 40(12):1744-1761. PubMed ID: 32776117 [Abstract] [Full Text] [Related]
72. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.). Raza A, Su W, Hussain MA, Mehmood SS, Zhang X, Cheng Y, Zou X, Lv Y. Front Plant Sci; 2021 Dec 05; 12():721681. PubMed ID: 34691103 [Abstract] [Full Text] [Related]
73. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. Zhang ZH, Zhou T, Tang TJ, Song HX, Guan CY, Huang JY, Hua YP. J Exp Bot; 2019 Oct 15; 70(19):5437-5455. PubMed ID: 31232451 [Abstract] [Full Text] [Related]
74. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. Tan H, Xie Q, Xiang X, Li J, Zheng S, Xu X, Guo H, Ye W. PLoS One; 2015 Oct 15; 10(4):e0124794. PubMed ID: 25919591 [Abstract] [Full Text] [Related]
75. Integrated analyses of transcriptome and metabolome provides new insights into the primary and secondary metabolism in response to nitrogen deficiency and soil compaction stress in peanut roots. Yang L, Wu Q, Liang H, Yin L, Shen P. Front Plant Sci; 2022 Oct 15; 13():948742. PubMed ID: 36247623 [Abstract] [Full Text] [Related]
76. Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (Brassica napus L.). Javeed HMR, Ali M, Skalicky M, Nawaz F, Qamar R, Rehman AU, Faheem M, Mubeen M, Iqbal MM, Rahman MHU, Vachova P, Brestic M, Baazeem A, El Sabagh A. Molecules; 2021 May 25; 26(11):. PubMed ID: 34070241 [Abstract] [Full Text] [Related]
78. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C. Theor Appl Genet; 2006 Jun 25; 113(1):49-54. PubMed ID: 16604336 [Abstract] [Full Text] [Related]
79. Analysis of Flavonoid Metabolites in Watercress (Nasturtium officinale R. Br.) and the Non-Heading Chinese Cabbage (Brassica rapa ssp. chinensis cv. Aijiaohuang) Using UHPLC-ESI-MS/MS. Ma X, Ding Q, Hou X, You X. Molecules; 2021 Sep 26; 26(19):. PubMed ID: 34641369 [Abstract] [Full Text] [Related]