These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 35637786

  • 1. Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks.
    Ekberg V, Samways ML, Misini Ignjatović M, Essex JW, Ryde U.
    ACS Phys Chem Au; 2022 May 25; 2(3):247-259. PubMed ID: 35637786
    [Abstract] [Full Text] [Related]

  • 2. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y, Melling OJ, Dong W, Essex JW, Mobley DL.
    J Comput Aided Mol Des; 2022 Oct 25; 36(10):767-779. PubMed ID: 36198874
    [Abstract] [Full Text] [Related]

  • 3. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS).
    Jiang W.
    J Chem Theory Comput; 2019 Apr 09; 15(4):2179-2186. PubMed ID: 30821969
    [Abstract] [Full Text] [Related]

  • 4. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y, Roux B.
    J Chem Phys; 2008 Mar 21; 128(11):115103. PubMed ID: 18361618
    [Abstract] [Full Text] [Related]

  • 5. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.
    Ross GA, Russell E, Deng Y, Lu C, Harder ED, Abel R, Wang L.
    J Chem Theory Comput; 2020 Oct 13; 16(10):6061-6076. PubMed ID: 32955877
    [Abstract] [Full Text] [Related]

  • 6. py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD.
    Barhaghi MS, Crawford B, Schwing G, Hardy DJ, Stone JE, Schwiebert L, Potoff J, Tajkhorshid E.
    J Chem Theory Comput; 2022 Aug 09; 18(8):4983-4994. PubMed ID: 35621307
    [Abstract] [Full Text] [Related]

  • 7. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
    Ge Y, Wych DC, Samways ML, Wall ME, Essex JW, Mobley DL.
    J Chem Theory Comput; 2022 Mar 08; 18(3):1359-1381. PubMed ID: 35148093
    [Abstract] [Full Text] [Related]

  • 8. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.
    Nguyen CN, Young TK, Gilson MK.
    J Chem Phys; 2012 Jul 28; 137(4):044101. PubMed ID: 22852591
    [Abstract] [Full Text] [Related]

  • 9. Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.
    Sun D, Lakkaraju SK, Jo S, MacKerell AD.
    J Chem Theory Comput; 2018 Oct 09; 14(10):5290-5302. PubMed ID: 30183291
    [Abstract] [Full Text] [Related]

  • 10. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules.
    Wahl J, Smieško M.
    J Chem Inf Model; 2019 Feb 25; 59(2):754-765. PubMed ID: 30640456
    [Abstract] [Full Text] [Related]

  • 11. Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome.
    Ge X, Roux B.
    J Phys Chem B; 2010 Jul 29; 114(29):9525-39. PubMed ID: 20608691
    [Abstract] [Full Text] [Related]

  • 12. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.
    Lakkaraju SK, Raman EP, Yu W, MacKerell AD.
    J Chem Theory Comput; 2014 Jun 10; 10(6):2281-2290. PubMed ID: 24932136
    [Abstract] [Full Text] [Related]

  • 13. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations.
    Wahl J, Smieško M.
    ChemMedChem; 2018 Jul 06; 13(13):1325-1335. PubMed ID: 29726604
    [Abstract] [Full Text] [Related]

  • 14. Replica-Exchange and Standard State Binding Free Energies with Grand Canonical Monte Carlo.
    Ross GA, Bruce Macdonald HE, Cave-Ayland C, Cabedo Martinez AI, Essex JW.
    J Chem Theory Comput; 2017 Dec 12; 13(12):6373-6381. PubMed ID: 29091438
    [Abstract] [Full Text] [Related]

  • 15. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
    Melling OJ, Samways ML, Ge Y, Mobley DL, Essex JW.
    J Chem Theory Comput; 2023 Feb 14; 19(3):1050-1062. PubMed ID: 36692215
    [Abstract] [Full Text] [Related]

  • 16. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X, Roux B.
    J Mol Recognit; 2010 Feb 14; 23(2):128-41. PubMed ID: 20151411
    [Abstract] [Full Text] [Related]

  • 17. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S, Tanaka S.
    Molecules; 2016 Nov 23; 21(11):. PubMed ID: 27886114
    [Abstract] [Full Text] [Related]

  • 18. Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory.
    Chen L, Cruz A, Roe DR, Simmonett AC, Wickstrom L, Deng N, Kurtzman T.
    J Chem Theory Comput; 2021 May 11; 17(5):2714-2724. PubMed ID: 33830762
    [Abstract] [Full Text] [Related]

  • 19. Water Networks in Complexes between Proteins and FDA-Approved Drugs.
    Samways ML, Bruce Macdonald HE, Taylor RD, Essex JW.
    J Chem Inf Model; 2023 Jan 09; 63(1):387-396. PubMed ID: 36469670
    [Abstract] [Full Text] [Related]

  • 20. grand: A Python Module for Grand Canonical Water Sampling in OpenMM.
    Samways ML, Bruce Macdonald HE, Essex JW.
    J Chem Inf Model; 2020 Oct 26; 60(10):4436-4441. PubMed ID: 32835483
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.