These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Lin P, Wang K, Zhou C, Xie Y, Yao X, Yin H. Int J Mol Sci; 2018 Jan 02; 19(1):. PubMed ID: 29301285 [Abstract] [Full Text] [Related]
4. Transcriptomic Analyses of Camellia oleifera 'Huaxin' Leaf Reveal Candidate Genes Related to Long-Term Cold Stress. Wu L, Li J, Li Z, Zhang F, Tan X. Int J Mol Sci; 2020 Jan 28; 21(3):. PubMed ID: 32013013 [Abstract] [Full Text] [Related]
5. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch). Kanjana W, Suzuki T, Ishii K, Kozaki T, Iigo M, Yamane K. BMC Genomics; 2016 Aug 08; 17():575. PubMed ID: 27501791 [Abstract] [Full Text] [Related]
6. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. Dong B, Wu B, Hong W, Li X, Li Z, Xue L, Huang Y. PLoS One; 2017 Aug 08; 12(7):e0181835. PubMed ID: 28759610 [Abstract] [Full Text] [Related]
10. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism. Xia EH, Jiang JJ, Huang H, Zhang LP, Zhang HB, Gao LZ. PLoS One; 2014 Aug 08; 9(8):e104150. PubMed ID: 25136805 [Abstract] [Full Text] [Related]
11. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (Camellia oleifera). Wu B, Ruan C, Shah AH, Li D, Li H, Ding J, Li J, Du W. Cells; 2021 Dec 27; 11(1):. PubMed ID: 35011633 [Abstract] [Full Text] [Related]
12. Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera. He Z, Liu C, Wang X, Wang R, Tian Y, Chen Y. Biochem Genet; 2021 Apr 27; 59(2):398-421. PubMed ID: 33040171 [Abstract] [Full Text] [Related]
13. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying. Feng JL, Yang ZJ, Chen SP, El-Kassaby YA, Chen H. BMC Genomics; 2017 Jul 20; 18(1):546. PubMed ID: 28728593 [Abstract] [Full Text] [Related]
14. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Camellia oleifera Varieties During Seed Maturing. Yang D, Wang R, Lai H, He Y, Chen Y, Xun C, Zhang Y, He Z. J Agric Food Chem; 2024 Aug 14; 72(32):18257-18270. PubMed ID: 39084609 [Abstract] [Full Text] [Related]
15. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island. Ye Z, Wu Y, Ul Haq Muhammad Z, Yan W, Yu J, Zhang J, Yao G, Hu X. PLoS One; 2020 Aug 14; 15(2):e0226888. PubMed ID: 32027663 [Abstract] [Full Text] [Related]
16. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Camellia oleifera Defense against Anthracnose. Yang C, Wu P, Yao X, Sheng Y, Zhang C, Lin P, Wang K. Int J Mol Sci; 2022 Jan 04; 23(1):. PubMed ID: 35008957 [Abstract] [Full Text] [Related]
17. Transcriptome analysis of Cinnamomum migao seed germination in medicinal plants of Southwest China. Huang X, Tian T, Chen J, Wang D, Tong B, Liu J. BMC Plant Biol; 2021 Jun 11; 21(1):270. PubMed ID: 34116632 [Abstract] [Full Text] [Related]
18. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana. Silva AT, Ligterink W, Hilhorst HWM. Plant Mol Biol; 2017 Nov 11; 95(4-5):481-496. PubMed ID: 29046998 [Abstract] [Full Text] [Related]
19. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination. Wang L, Wang HL, Yin L, Tian CY. BMC Genomics; 2017 Oct 19; 18(1):806. PubMed ID: 29052505 [Abstract] [Full Text] [Related]