These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 3567196
1. Shape transformations induced by amphiphiles in erythrocytes. Isomaa B, Hägerstrand H, Paatero G. Biochim Biophys Acta; 1987 May 12; 899(1):93-103. PubMed ID: 3567196 [Abstract] [Full Text] [Related]
2. Vesiculation induced by amphiphiles in erythrocytes. Hägerstrand H, Isomaa B. Biochim Biophys Acta; 1989 Jul 10; 982(2):179-86. PubMed ID: 2473779 [Abstract] [Full Text] [Related]
3. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Hägerstrand H, Isomaa B. Biochim Biophys Acta; 1992 Aug 24; 1109(2):117-26. PubMed ID: 1520690 [Abstract] [Full Text] [Related]
4. Shape and volume changes in rat erythrocytes induced by surface-active alkyltrimethylammonium salts and sodium dodecyl sulphate. Isomaa B, Paatero G. Biochim Biophys Acta; 1981 Oct 02; 647(2):211-22. PubMed ID: 7295726 [Abstract] [Full Text] [Related]
5. Effects of nonionic amphiphiles at sublytic concentrations on the erythrocyte membrane. Isomaa B, Hägerstrand H. Cell Biochem Funct; 1988 Jul 02; 6(3):183-90. PubMed ID: 2842083 [Abstract] [Full Text] [Related]
9. Expansion of phosphatidylcholine and phosphatidylserine/phosphatidylcholine monolayers by differently charged amphiphiles. Białkowska K, Bobrowska-Hägerstrand M, Hägerstrand H. Z Naturforsch C J Biosci; 2001 Sep 11; 56(9-10):826-30. PubMed ID: 11724390 [Abstract] [Full Text] [Related]
10. Amphiphile-induced antihaemolysis is not causally related to shape changes and vesiculation. Hägerstrand H, Isomaa B. Chem Biol Interact; 1991 Sep 11; 79(3):335-47. PubMed ID: 1717169 [Abstract] [Full Text] [Related]
12. Bilayer balance and regulation of red cell shape changes. Mohandas N, Greenquist AC, Shohet SB. J Supramol Struct; 1978 Sep 11; 9(3):453-8. PubMed ID: 748684 [Abstract] [Full Text] [Related]
13. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape. Iglic A, Kralj-Iglic V, Hägerstrand H. Eur Biophys J; 1998 Sep 11; 27(4):335-9. PubMed ID: 9691462 [Abstract] [Full Text] [Related]
14. Low pH induced shape changes and vesiculation of human erythrocytes. Gros M, Vrhovec S, Brumen M, Svetina S, Zeks B. Gen Physiol Biophys; 1996 Apr 11; 15(2):145-63. PubMed ID: 8899418 [Abstract] [Full Text] [Related]
15. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane. Riquelme G, Jaimovich E, Lingsch C, Behn C. Biochim Biophys Acta; 1982 Jul 28; 689(2):219-29. PubMed ID: 7115708 [Abstract] [Full Text] [Related]
16. Drug-induced shape change in erythrocytes correlates with membrane potential change and is independent of glycocalyx charge. Nwafor A, Coakley WT. Biochem Pharmacol; 1985 Sep 15; 34(18):3329-36. PubMed ID: 4038341 [Abstract] [Full Text] [Related]
17. [Transformations of erythrocytes shape and its regulation]. Stasiuk M, Kijanka G, Kozubek A. Postepy Biochem; 2009 Sep 15; 55(4):425-33. PubMed ID: 20201356 [Abstract] [Full Text] [Related]
18. Role of the bilayer in the shape of the isolated erythrocyte membrane. Lange Y, Gough A, Steck TL. J Membr Biol; 1982 Sep 15; 69(2):113-23. PubMed ID: 7131536 [Abstract] [Full Text] [Related]