These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 35680105

  • 21. [Research advances on the role of Schwann cells in diabetic peripheral neuropathy].
    Hao T, Cao T, Ji P, Zhang WF, Tao K.
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2023 Dec 20; 39(12):1190-1194. PubMed ID: 38129308
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Generalized depletion of free nerve endings and decrease of cutaneous nervous innervation in streptozotocin-induced painful and painless diabetic rats.
    Chu CC, Wang SD, Chiang JS, Ho ST.
    J Chin Med Assoc; 2012 Jul 20; 75(7):314-21. PubMed ID: 22824045
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. TRPA1 sensitization during diabetic vascular impairment contributes to cold hypersensitivity in a mouse model of painful diabetic peripheral neuropathy.
    Hiyama H, Yano Y, So K, Imai S, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S.
    Mol Pain; 2018 Jul 20; 14():1744806918789812. PubMed ID: 29968518
    [Abstract] [Full Text] [Related]

  • 26. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.
    Schuelert N, Gorodetskaya N, Just S, Doods H, Corradini L.
    Neuroscience; 2015 Apr 16; 291():146-54. PubMed ID: 25686525
    [Abstract] [Full Text] [Related]

  • 27. Photobiostimulation reverses allodynia and peripheral nerve damage in streptozotocin-induced type 1 diabetes.
    Rocha IRC, Ciena AP, Rosa AS, Martins DO, Chacur M.
    Lasers Med Sci; 2017 Apr 16; 32(3):495-501. PubMed ID: 28138810
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice.
    Himeno T, Kamiya H, Naruse K, Harada N, Ozaki N, Seino Y, Shibata T, Kondo M, Kato J, Okawa T, Fukami A, Hamada Y, Inagaki N, Seino Y, Drucker DJ, Oiso Y, Nakamura J.
    Diabetes; 2011 Sep 16; 60(9):2397-406. PubMed ID: 21810596
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Comparison of sensory tests and neuronal quantity of peripheral nerves between streptozotocin (STZ)-induced diabetic rats and paclitaxel (PAC)-treated rats.
    Jin HY, Lee NY, Ko HA, Lee KA, Park TS.
    Somatosens Mot Res; 2016 Sep 16; 33(3-4):186-195. PubMed ID: 27756190
    [Abstract] [Full Text] [Related]

  • 33. Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy.
    Majd H, Amin S, Ghazizadeh Z, Cesiulis A, Arroyo E, Lankford K, Majd A, Farahvashi S, Chemel AK, Okoye M, Scantlen MD, Tchieu J, Calder EL, Le Rouzic V, Shibata B, Arab A, Goodarzi H, Pasternak G, Kocsis JD, Chen S, Studer L, Fattahi F.
    Cell Stem Cell; 2023 May 04; 30(5):632-647.e10. PubMed ID: 37146583
    [Abstract] [Full Text] [Related]

  • 34. Local insulin and the rapid regrowth of diabetic epidermal axons.
    Guo G, Kan M, Martinez JA, Zochodne DW.
    Neurobiol Dis; 2011 Aug 04; 43(2):414-21. PubMed ID: 21530660
    [Abstract] [Full Text] [Related]

  • 35. Targeting the NADPH Oxidase-4 and Liver X Receptor Pathway Preserves Schwann Cell Integrity in Diabetic Mice.
    Eid SA, El Massry M, Hichor M, Haddad M, Grenier J, Dia B, Barakat R, Boutary S, Chanal J, Aractingi S, Wiesel P, Szyndralewiez C, Azar ST, Boitard C, Zaatari G, Eid AA, Massaad C.
    Diabetes; 2020 Mar 04; 69(3):448-464. PubMed ID: 31882567
    [Abstract] [Full Text] [Related]

  • 36. Influence of Glucose Fluctuation on Peripheral Nerve Damage in Streptozotocin-Induced Diabetic Rats.
    Kim YJ, Lee NY, Lee KA, Park TS, Jin HY.
    Diabetes Metab J; 2022 Jan 04; 46(1):117-128. PubMed ID: 34496549
    [Abstract] [Full Text] [Related]

  • 37. Effects of experimental diabetes on axonal and Schwann cell changes in sciatic nerve isografts.
    Eckersley L, Ansselin AD, Tomlinson DR.
    Brain Res Mol Brain Res; 2001 Aug 15; 92(1-2):128-37. PubMed ID: 11483249
    [Abstract] [Full Text] [Related]

  • 38. Lipin1 Alleviates Autophagy Disorder in Sciatic Nerve and Improves Diabetic Peripheral Neuropathy.
    Wang M, Xie M, Yu S, Shang P, Zhang C, Han X, Fan C, Chen L, Zhuang X, Chen S.
    Mol Neurobiol; 2021 Nov 15; 58(11):6049-6061. PubMed ID: 34435332
    [Abstract] [Full Text] [Related]

  • 39. Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice.
    Urban MJ, Li C, Yu C, Lu Y, Krise JM, McIntosh MP, Rajewski RA, Blagg BS, Dobrowsky RT.
    ASN Neuro; 2010 Aug 11; 2(4):e00040. PubMed ID: 20711301
    [Abstract] [Full Text] [Related]

  • 40. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes.
    Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R.
    Diabetes; 2007 Dec 11; 56(12):2997-3005. PubMed ID: 17720896
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.