These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
321 related items for PubMed ID: 35712565
1. Estimation of Rice Aboveground Biomass by Combining Canopy Spectral Reflectance and Unmanned Aerial Vehicle-Based Red Green Blue Imagery Data. Wang Z, Ma Y, Chen P, Yang Y, Fu H, Yang F, Raza MA, Guo C, Shu C, Sun Y, Yang Z, Chen Z, Ma J. Front Plant Sci; 2022; 13():903643. PubMed ID: 35712565 [Abstract] [Full Text] [Related]
2. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Lu N, Zhou J, Han Z, Li D, Cao Q, Yao X, Tian Y, Zhu Y, Cao W, Cheng T. Plant Methods; 2019; 15():17. PubMed ID: 30828356 [Abstract] [Full Text] [Related]
3. Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery. Liu J, Zhu Y, Song L, Su X, Li J, Zheng J, Zhu X, Ren L, Wang W, Li X. Front Plant Sci; 2023; 14():1284235. PubMed ID: 38192693 [Abstract] [Full Text] [Related]
4. Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages. Dai Y, Yu S, Ma T, Ding J, Chen K, Zeng G, Xie A, He P, Peng S, Zhang M. Front Plant Sci; 2024; 15():1328834. PubMed ID: 38774220 [Abstract] [Full Text] [Related]
5. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height. Liu Y, Feng H, Yue J, Jin X, Li Z, Yang G. Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445 [Abstract] [Full Text] [Related]
6. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Cen H, Wan L, Zhu J, Li Y, Li X, Zhu Y, Weng H, Wu W, Yin W, Xu C, Bao Y, Feng L, Shou J, He Y. Plant Methods; 2019; 15():32. PubMed ID: 30972143 [Abstract] [Full Text] [Related]
7. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index. Zhou C, Gong Y, Fang S, Yang K, Peng Y, Wu X, Zhu R. Front Plant Sci; 2022; 13():957870. PubMed ID: 35991436 [Abstract] [Full Text] [Related]
8. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Zheng H, Cheng T, Li D, Yao X, Tian Y, Cao W, Zhu Y. Front Plant Sci; 2018; 9():936. PubMed ID: 30034405 [Abstract] [Full Text] [Related]
9. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (Manihot esculenta Crantz). Selvaraj MG, Valderrama M, Guzman D, Valencia M, Ruiz H, Acharjee A. Plant Methods; 2020; 16():87. PubMed ID: 32549903 [Abstract] [Full Text] [Related]
10. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning. Dhakal R, Maimaitijiang M, Chang J, Caffe M. Sensors (Basel); 2023 Dec 08; 23(24):. PubMed ID: 38139554 [Abstract] [Full Text] [Related]
11. Precision estimation of winter wheat crop height and above-ground biomass using unmanned aerial vehicle imagery and oblique photoghraphy point cloud data. Li Y, Li C, Cheng Q, Chen L, Li Z, Zhai W, Mao B, Chen Z. Front Plant Sci; 2024 Dec 08; 15():1437350. PubMed ID: 39359624 [Abstract] [Full Text] [Related]
12. Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models. Yang K, Mo J, Luo S, Peng Y, Fang S, Wu X, Zhu R, Li Y, Yuan N, Zhou C, Gong Y. Plant Phenomics; 2023 Dec 08; 5():0056. PubMed ID: 37273463 [Abstract] [Full Text] [Related]
13. Using Unmanned Aerial Vehicle-Based Multispectral Image Data to Monitor the Growth of Intercropping Crops in Tea Plantation. Shi Y, Gao Y, Wang Y, Luo D, Chen S, Ding Z, Fan K. Front Plant Sci; 2022 Dec 08; 13():820585. PubMed ID: 35283919 [Abstract] [Full Text] [Related]
14. Spatio-temporal mapping of leaf area index in rice: spectral indices and multi-scale texture comparison derived from different sensors. Li C, Teng X, Tan Y, Zhang Y, Zhang H, Xiao D, Luo S. Front Plant Sci; 2024 Dec 08; 15():1445490. PubMed ID: 39309178 [Abstract] [Full Text] [Related]
15. UAV and Satellite Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow Steppe. Zhu X, Chen X, Ma L, Liu W. Plants (Basel); 2024 Mar 31; 13(7):. PubMed ID: 38611535 [Abstract] [Full Text] [Related]
16. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features. Sun X, Yang Z, Su P, Wei K, Wang Z, Yang C, Wang C, Qin M, Xiao L, Yang W, Zhang M, Song X, Feng M. Front Plant Sci; 2023 Mar 31; 14():1158837. PubMed ID: 37063231 [Abstract] [Full Text] [Related]
17. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Jiang F, Kutia M, Ma K, Chen S, Long J, Sun H. Sci Total Environ; 2021 Sep 01; 785():147335. PubMed ID: 33933773 [Abstract] [Full Text] [Related]
19. Aboveground biomass estimation of wetland vegetation at the species level using unoccupied aerial vehicle RGB imagery. Zhou R, Yang C, Li E, Cai X, Wang X. Front Plant Sci; 2023 Sep 01; 14():1181887. PubMed ID: 37528979 [Abstract] [Full Text] [Related]
20. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage. Zou M, Liu Y, Fu M, Li C, Zhou Z, Meng H, Xing E, Ren Y. Front Plant Sci; 2023 Sep 01; 14():1272049. PubMed ID: 38235191 [Abstract] [Full Text] [Related] Page: [Next] [New Search]