These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 3571513
1. Morphological and functional changes in the retinotectal system of the pigeon during the early posthatching period. Bagnoli P, Porciatti V, Fontanesi G, Sebastiani L. J Comp Neurol; 1987 Feb 15; 256(3):400-11. PubMed ID: 3571513 [Abstract] [Full Text] [Related]
2. Developing pigeon retina: light-evoked responses and ultrastructure of outer segments and synapses. Bagnoli P, Porciatti V, Lanfranchi A, Bedini C. J Comp Neurol; 1985 May 15; 235(3):384-94. PubMed ID: 3998217 [Abstract] [Full Text] [Related]
3. Reorganization of visual pathways following posthatching removal of one retina in pigeons. Bagnoli P, Casini G, Fontanesi G, Sebastiani L. J Comp Neurol; 1989 Oct 15; 288(3):512-27. PubMed ID: 2477422 [Abstract] [Full Text] [Related]
4. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection. Xiong M, Pallas SL, Lim S, Finlay BL. J Comp Neurol; 1994 Jun 22; 344(4):581-97. PubMed ID: 7929893 [Abstract] [Full Text] [Related]
5. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish. Olson MD, Meyer RL. J Comp Neurol; 1994 Sep 22; 347(4):481-94. PubMed ID: 7529264 [Abstract] [Full Text] [Related]
6. Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii). Marotte LR. J Comp Neurol; 1993 May 01; 331(1):1-13. PubMed ID: 7686568 [Abstract] [Full Text] [Related]
7. Growth cone-target interactions in the frog retinotectal pathway. Reh TA, Constantine-Paton M. J Neurosci Res; 1985 May 01; 13(1-2):89-100. PubMed ID: 2983078 [Abstract] [Full Text] [Related]
8. Diameters and terminal patterns of retinofugal axons in their target areas: an HRP study in two teleosts (Sebastiscus and Navodon). Ito H, Vanegas H, Murakami T, Morita Y. J Comp Neurol; 1984 Dec 01; 230(2):179-97. PubMed ID: 6512016 [Abstract] [Full Text] [Related]
10. [Discharges of neurons of the frog tectum during electric stimulation of individual retinal ganglion cells]. Kuras AV, Khusainoviene NP. Neirofiziologiia; 1984 Dec 01; 16(6):829-35. PubMed ID: 6097825 [Abstract] [Full Text] [Related]
11. On the formation of eye dominance stripes and patches in the doubly-innervated optic tectum of the chick. Fawcett JW, Cowan WM. Brain Res; 1985 Jan 01; 349(1-2):147-63. PubMed ID: 3986583 [Abstract] [Full Text] [Related]
17. Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study. Stuermer CA. J Comp Neurol; 1984 Oct 20; 229(2):214-32. PubMed ID: 6501601 [Abstract] [Full Text] [Related]
19. Development of the retinotectal system in the pigeon: a cytoarchitectonic and tracing study with cholera toxin. Manns M, Güntürkün O. Anat Embryol (Berl); 1997 Jun 20; 195(6):539-55. PubMed ID: 9193729 [Abstract] [Full Text] [Related]
20. A comparison of the normal and regenerated retinotectal pathways of goldfish. Stuermer CA, Easter SS. J Comp Neurol; 1984 Feb 10; 223(1):57-76. PubMed ID: 6200514 [Abstract] [Full Text] [Related] Page: [Next] [New Search]