These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
345 related items for PubMed ID: 35735535
1. Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@Ag Core-Shell Nanotags for Bisphenol A Determination. Li S, He D, Li S, Chen R, Peng Y, Li S, Han D, Wang Y, Qin K, Ren S, Chen P, Gao Z. Biosensors (Basel); 2022 Jun 02; 12(6):. PubMed ID: 35735535 [Abstract] [Full Text] [Related]
2. Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Chen R, Sun Y, Huo B, Mao Z, Wang X, Li S, Lu R, Li S, Liang J, Gao Z. Anal Chim Acta; 2021 Oct 02; 1180():338888. PubMed ID: 34538331 [Abstract] [Full Text] [Related]
3. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes. Liu Y, Tian H, Chen X, Liu W, Xia K, Huang J, de la Chapelle ML, Huang G, Zhang Y, Fu W. Mikrochim Acta; 2020 Feb 10; 187(3):160. PubMed ID: 32040773 [Abstract] [Full Text] [Related]
4. Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants. Li D, Li C, Wang H, Li J, Zhao Y, Jiang X, Wen G, Liang A, Jiang Z. Mikrochim Acta; 2021 Apr 24; 188(5):175. PubMed ID: 33893886 [Abstract] [Full Text] [Related]
5. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Zhang Y, Li L, Zhang H, Shang J, Li C, Naqvi SMZA, Birech Z, Hu J. Anal Bioanal Chem; 2022 Mar 24; 414(8):2757-2766. PubMed ID: 35141764 [Abstract] [Full Text] [Related]
6. Monolithic 3D structural-substrate SERS sensing platform for ultrasensitive and highly-specific analysis of trace bisphenol A. Li Z, Xie Q, Chi J, Chen H, Chen Z, Lin X, Huang G. Talanta; 2024 Jan 01; 266(Pt 2):125081. PubMed ID: 37639869 [Abstract] [Full Text] [Related]
7. Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Chung E, Jeon J, Yu J, Lee C, Choo J. Biosens Bioelectron; 2015 Feb 15; 64():560-5. PubMed ID: 25310489 [Abstract] [Full Text] [Related]
8. On-site detection of chloramphenicol in fish using SERS-based magnetic aptasensor coupled with a handheld Raman spectrometer. Chen J, Lin H, Cao L, Sui J, Wang L, Fang X, Wang K. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec 15; 303():123211. PubMed ID: 37531680 [Abstract] [Full Text] [Related]
9. Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H. Mikrochim Acta; 2018 Jun 07; 185(7):320. PubMed ID: 29881880 [Abstract] [Full Text] [Related]
10. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Chen R, Li S, Sun Y, Huo B, Xia Y, Qin Y, Li S, Shi B, He D, Liang J, Gao Z. Mikrochim Acta; 2021 Jul 31; 188(8):281. PubMed ID: 34331147 [Abstract] [Full Text] [Related]
11. An ultrasensitive electrochemical biosensor for bisphenol A based on aptamer-modified MrGO@AuNPs and ssDNA-functionalized AuNP@MBs synergistic amplification. Hu L, Cui J, Wang Y, Jia J. Chemosphere; 2023 Jan 31; 311(Pt 2):137154. PubMed ID: 36351468 [Abstract] [Full Text] [Related]
12. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core-Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW. ACS Appl Mater Interfaces; 2019 Jan 23; 11(3):3617-3626. PubMed ID: 30608142 [Abstract] [Full Text] [Related]
13. A novel SWCNT-amplified "signal-on" electrochemical aptasensor for the determination of trace level of bisphenol A in human serum and lake water. Zhao Z, Zheng J, Nguyen EP, Tao D, Cheng J, Pan H, Zhang L, Jaffrezic-Renault N, Guo Z. Mikrochim Acta; 2020 Aug 16; 187(9):500. PubMed ID: 32803374 [Abstract] [Full Text] [Related]
14. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Lee EH, Lee SK, Kim MJ, Lee SW. Food Chem; 2019 Jul 30; 287():205-213. PubMed ID: 30857691 [Abstract] [Full Text] [Related]
15. Novel ratiometric surface-enhanced raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg2. Wu Y, Jiang T, Wu Z, Yu R. Biosens Bioelectron; 2018 Jan 15; 99():646-652. PubMed ID: 28843197 [Abstract] [Full Text] [Related]
16. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Xue JQ, Li DW, Qu LL, Long YT. Anal Chim Acta; 2013 May 13; 777():57-62. PubMed ID: 23622965 [Abstract] [Full Text] [Related]
17. Bilayer magnetic-plasmonic satellite nanoassemblies for SERS detection of tobramycin with exonuclease amplification. Zhao B, Liu H, Wang H, Zhang Y, Wang X, Zhou N. Biosens Bioelectron; 2022 Dec 15; 218():114789. PubMed ID: 36242904 [Abstract] [Full Text] [Related]
18. A facile dual-mode SERS/fluorescence aptasensor for AFB1 detection based on gold nanoparticles and magnetic nanoparticles. Gao X, Liu Y, Wei J, Wang Z, Ma X. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul 05; 315():124268. PubMed ID: 38603962 [Abstract] [Full Text] [Related]
19. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Zhu A, Ali S, Xu Y, Ouyang Q, Chen Q. Biosens Bioelectron; 2021 Jan 15; 172():112806. PubMed ID: 33190016 [Abstract] [Full Text] [Related]
20. Improving the detection accuracy of the dual SERS aptasensor system with uncontrollable SERS "hot spot" using machine learning tools. Chen J, Lin H, Guo M, Cao L, Sui J, Wang K. Anal Chim Acta; 2024 Jun 08; 1307():342631. PubMed ID: 38719408 [Abstract] [Full Text] [Related] Page: [Next] [New Search]