These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Towards Feasible Solutions for Load Monitoring in Quebec Residences. Hosseini SS, Delcroix B, Henao N, Agbossou K, Kelouwani S. Sensors (Basel); 2023 Aug 21; 23(16):. PubMed ID: 37631824 [Abstract] [Full Text] [Related]
5. A Field Study of Nonintrusive Load Monitoring Devices and Implications for Load Disaggregation. Mayhorn E, Butzbaugh J, Meier A. Sensors (Basel); 2023 Oct 05; 23(19):. PubMed ID: 37837083 [Abstract] [Full Text] [Related]
6. Learning High-Dimensional Evolving Data Streams With Limited Labels. Din SU, Kumar J, Shao J, Mawuli CB, Ndiaye WD. IEEE Trans Cybern; 2022 Nov 05; 52(11):11373-11384. PubMed ID: 34033560 [Abstract] [Full Text] [Related]
7. Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring. Hur CH, Lee HE, Kim YJ, Kang SG. Sensors (Basel); 2022 Aug 04; 22(15):. PubMed ID: 35957392 [Abstract] [Full Text] [Related]
8. A Novel Bearing Fault Diagnosis Method Based on Few-Shot Transfer Learning across Different Datasets. Zhang Y, Li S, Zhang A, Li C, Qiu L. Entropy (Basel); 2022 Sep 14; 24(9):. PubMed ID: 36141182 [Abstract] [Full Text] [Related]
9. Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction. Rahmani K, Thapa R, Tsou P, Casie Chetty S, Barnes G, Lam C, Foon Tso C. Int J Med Inform; 2023 May 14; 173():104930. PubMed ID: 36893656 [Abstract] [Full Text] [Related]
11. One or two things we know about concept drift-a survey on monitoring in evolving environments. Part B: locating and explaining concept drift. Hinder F, Vaquet V, Hammer B. Front Artif Intell; 2024 May 14; 7():1330258. PubMed ID: 39100107 [Abstract] [Full Text] [Related]
15. A survey on detecting healthcare concept drift in AI/ML models from a finance perspective. M S AR, C R N, B R S, Lahza H, Lahza HFM. Front Artif Intell; 2022 May 14; 5():955314. PubMed ID: 37139355 [Abstract] [Full Text] [Related]
16. Anomaly Detection and Concept Drift Adaptation for Dynamic Systems: A General Method with Practical Implementation Using an Industrial Collaborative Robot. Kermenov R, Nabissi G, Longhi S, Bonci A. Sensors (Basel); 2023 Mar 20; 23(6):. PubMed ID: 36991969 [Abstract] [Full Text] [Related]
17. Domain-Adaptive Prototype-Recalibrated Network with Transductive Learning Paradigm for Intelligent Fault Diagnosis under Various Limited Data Conditions. Kuang J, Tao T, Wu Q, Han C, Wei F, Chen S, Zhou W, Yan C, Xu G. Sensors (Basel); 2022 Aug 30; 22(17):. PubMed ID: 36080992 [Abstract] [Full Text] [Related]
18. Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification. Mirza B, Lin Z. Neural Netw; 2016 Aug 30; 80():79-94. PubMed ID: 27187873 [Abstract] [Full Text] [Related]
19. Tiny Machine Learning for Concept Drift. Disabato S, Roveri M. IEEE Trans Neural Netw Learn Syst; 2024 Jun 30; 35(6):8470-8481. PubMed ID: 37015671 [Abstract] [Full Text] [Related]
20. Multi-State Energy Classifier to Evaluate the Performance of the NILM Algorithm. Desai S, Alhadad R, Mahmood A, Chilamkurti N, Rho S. Sensors (Basel); 2019 Nov 28; 19(23):. PubMed ID: 31795235 [Abstract] [Full Text] [Related] Page: [Next] [New Search]