These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 35758815
1. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency. Elkayam S, Orenstein Y. Bioinformatics; 2022 Jun 24; 38(Suppl 1):i161-i168. PubMed ID: 35758815 [Abstract] [Full Text] [Related]
4. Machine learning-based prediction models to guide the selection of Cas9 variants for efficient gene editing. Li J, Wu P, Cao Z, Huang G, Lu Z, Yan J, Zhang H, Zhou Y, Liu R, Chen H, Ma L, Luo M. Cell Rep; 2024 Feb 27; 43(2):113765. PubMed ID: 38358884 [Abstract] [Full Text] [Related]
5. A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing. Xie K, Yang Y. Methods Mol Biol; 2019 Feb 27; 1917():63-73. PubMed ID: 30610628 [Abstract] [Full Text] [Related]
6. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis. Li Y, Zhang L, Yang H, Xia Y, Liu L, Chen X, Shen W. Microbiol Spectr; 2022 Jun 29; 10(3):e0005922. PubMed ID: 35543560 [Abstract] [Full Text] [Related]
10. CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Konstantakos V, Nentidis A, Krithara A, Paliouras G. Nucleic Acids Res; 2022 Apr 22; 50(7):3616-3637. PubMed ID: 35349718 [Abstract] [Full Text] [Related]
14. Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection. Chen Y, Wang X. Bioinformatics; 2022 Nov 30; 38(23):5175-5181. PubMed ID: 36227031 [Abstract] [Full Text] [Related]