These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 35759958
21. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community]. Moshchanetskii PV, Pivovarova TA, Belyi AV, Kondrat'eva TF. Mikrobiologiia; 2014; 83(3):328-35. PubMed ID: 25844443 [Abstract] [Full Text] [Related]
22. Recovery of copper, zinc and lead from photovoltaic panel residue. Xanthopoulos P, Bevandić S, Spooren J, Binnemans K, Kukurugya F. RSC Adv; 2022 Jan 12; 12(4):2351-2360. PubMed ID: 35425251 [Abstract] [Full Text] [Related]
23. Developed Process Circuit Flowsheet of Al Amar Ore for Production of Nanocrystalline Ferrite and Improving Gold Recovery. Mahmoud MHH, Hessien MM, Alsawat M, Santos A, El-Bagoury N, Alanazi AK, Alshanbari NA. ACS Omega; 2020 Dec 08; 5(48):30858-30870. PubMed ID: 33324795 [Abstract] [Full Text] [Related]
24. Microbial leaching of metals from sulfide minerals. Suzuki I. Biotechnol Adv; 2001 Apr 01; 19(2):119-32. PubMed ID: 14538087 [Abstract] [Full Text] [Related]
25. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. Antonijević MM, Dimitrijević MD, Stevanović ZO, Serbula SM, Bogdanovic GD. J Hazard Mater; 2008 Oct 01; 158(1):23-34. PubMed ID: 18329798 [Abstract] [Full Text] [Related]
26. The leaching behavior of copper and iron recovery from reduction roasting pyrite cinder. Zhang H, Chen G, Cai X, Fu J, Liu M, Zhang P, Yu H. J Hazard Mater; 2021 Oct 15; 420():126561. PubMed ID: 34252668 [Abstract] [Full Text] [Related]
27. [Leaching of copper ore of the Udokanskoe deposit at low temperatures by an association of acidophilic chemolithotrophic microorganisms]. Kondrat'eva TF, Pivovarova TA, Krylova LN, Melamud VS, Adamov EV, Karavaĭko GI. Prikl Biokhim Mikrobiol; 2011 Oct 15; 47(5):572-8. PubMed ID: 22232899 [Abstract] [Full Text] [Related]
28. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Wang X, Ma L, Wu J, Xiao Y, Tao J, Liu X. Bioresour Technol; 2020 Jul 15; 308():123273. PubMed ID: 32247948 [Abstract] [Full Text] [Related]
29. [Thermoacidophilic micirobial community oxidizing the gold-bearing flotation concentrate of a pyrite-arsenopyrite ore]. Paniushkina AE, Tsaplina IA, Grigor'eva NV, Kondrat'eva TF. Mikrobiologiia; 2014 Jul 15; 83(5):552-64. PubMed ID: 25844467 [Abstract] [Full Text] [Related]
30. Investigation of Chalcopyrite Leaching Using an Ore-on-a-Chip. Yang D, Kirke M, Fan R, Priest C. Anal Chem; 2019 Jan 15; 91(2):1557-1562. PubMed ID: 30525486 [Abstract] [Full Text] [Related]
31. A review of zinc oxide mineral beneficiation using flotation method. Ejtemaei M, Gharabaghi M, Irannajad M. Adv Colloid Interface Sci; 2014 Apr 15; 206():68-78. PubMed ID: 23571227 [Abstract] [Full Text] [Related]
32. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Li Y, Kawashima N, Li J, Chandra AP, Gerson AR. Adv Colloid Interface Sci; 2013 Sep 15; 197-198():1-32. PubMed ID: 23791420 [Abstract] [Full Text] [Related]
33. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms. Bellenberg S, Buetti-Dinh A, Galli V, Ilie O, Herold M, Christel S, Boretska M, Pivkin IV, Wilmes P, Sand W, Vera M, Dopson M. Appl Environ Microbiol; 2018 Oct 15; 84(20):. PubMed ID: 30076195 [Abstract] [Full Text] [Related]
34. Cross-comparison of leaching strains isolated from two different regions: Chambishi and Dexing copper mines. Ngom B, Liang Y, Liu X. Biomed Res Int; 2014 Oct 15; 2014():787034. PubMed ID: 25478575 [Abstract] [Full Text] [Related]
35. Thermal treatment of Lanxess Lewatit® AF 5 resin used in the atmospheric chalcopyrite leaching process: Regeneration and sulfur recovery. Marzoughi O, Li L, Pickles C, Ghahreman A. Chemosphere; 2022 May 15; 295():133890. PubMed ID: 35134403 [Abstract] [Full Text] [Related]
36. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Johnson DB. Curr Opin Biotechnol; 2014 Dec 15; 30():24-31. PubMed ID: 24794631 [Abstract] [Full Text] [Related]
37. Selective Recovery of Zinc from Metallurgical Waste Materials from Processing Zinc and Lead Ores. Hyk W, Kitka K, Rudnicki D. Molecules; 2019 Jun 19; 24(12):. PubMed ID: 31248081 [Abstract] [Full Text] [Related]
38. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust. Wu JY, Chang FC, Wang HP, Tsai MJ, Ko CH, Chen CC. Environ Technol; 2015 Jun 19; 36(23):2952-8. PubMed ID: 25191877 [Abstract] [Full Text] [Related]
39. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. Boxall NJ, Cheng KY, Bruckard W, Kaksonen AH. J Hazard Mater; 2018 Oct 15; 360():504-511. PubMed ID: 30144769 [Abstract] [Full Text] [Related]
40. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon. Li M, Peng B, Chai L, Peng N, Yan H, Hou D. J Hazard Mater; 2012 Oct 30; 237-238():323-30. PubMed ID: 22975260 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]