These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 35759958

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Recovery of zinc from leach residues with minimum iron dissolution using oxidative leaching.
    Alizadeh R, Rashchi F, Vahidi E.
    Waste Manag Res; 2011 Feb; 29(2):165-71. PubMed ID: 20516004
    [Abstract] [Full Text] [Related]

  • 43. Selective recovery of antimony from Sb-bearing copper concentrates by integration of alkaline sulphide leaching solutions and microwave-assisted heating: A new sustainable processing route.
    Luo D, Wu X, Vázquez B, Maestre M, Davoise D, Lopez J, Cortina JL.
    Sci Total Environ; 2024 Nov 15; 951():175576. PubMed ID: 39153610
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.
    Africa CJ, van Hille RP, Harrison ST.
    Appl Microbiol Biotechnol; 2013 Feb 15; 97(3):1317-24. PubMed ID: 22410741
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process.
    Xiao Y, Liu X, Dong W, Liang Y, Niu J, Gu Y, Ma L, Hao X, Zhang X, Xu Z, Yin H.
    Arch Microbiol; 2017 Jul 15; 199(5):757-766. PubMed ID: 28260145
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. An effective separation process of arsenic, lead, and zinc from high arsenic-containing copper smelting ashes by alkali leaching followed by sulfide precipitation.
    Zhang Y, Feng X, Jin B.
    Waste Manag Res; 2020 Nov 15; 38(11):1214-1221. PubMed ID: 32515295
    [Abstract] [Full Text] [Related]

  • 51. Development of a Two-Stage Hydrometallurgical Process for Gold-Antimony Concentrate Treatment from the Olimpiadinskoe Deposit.
    Rusalev R, Rogozhnikov D, Dizer O, Golovkin D, Karimov K.
    Materials (Basel); 2023 Jul 01; 16(13):. PubMed ID: 37445081
    [Abstract] [Full Text] [Related]

  • 52. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.
    Dopson M, Halinen AK, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindström EB, Puhakka JA.
    Biotechnol Bioeng; 2007 Aug 01; 97(5):1205-15. PubMed ID: 17187443
    [Abstract] [Full Text] [Related]

  • 53. [Optimization of bioleaching and oxidation of gold-bearing pyrite-arsnopyrite ore concentrate in batch mode].
    Grigor'eva NV, Tsaplina IA, Paniushkina AE, Kondrat'eva TF.
    Mikrobiologiia; 2014 Aug 01; 83(5):565-74. PubMed ID: 25844468
    [Abstract] [Full Text] [Related]

  • 54. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards.
    Shah MB, Tipre DR, Purohit MS, Dave SR.
    J Biosci Bioeng; 2015 Aug 01; 120(2):167-73. PubMed ID: 25636979
    [Abstract] [Full Text] [Related]

  • 55. Bioleaching of Gold from Sulfidic Gold Ore Concentrate and Electronic Waste by Roseovarius tolerans and Roseovarius mucosus.
    Kudpeng K, Bohu T, Morris C, Thiravetyan P, Kaksonen AH.
    Microorganisms; 2020 Nov 14; 8(11):. PubMed ID: 33202548
    [Abstract] [Full Text] [Related]

  • 56. Quantifying indium with ion chromatography in hydro- and biohydrometallurgical leaching solutions.
    Ashworth C, Weller C, Frisch G.
    J Sep Sci; 2019 Aug 14; 42(15):2517-2522. PubMed ID: 31134747
    [Abstract] [Full Text] [Related]

  • 57. Progress in bioleaching: part B: applications of microbial processes by the minerals industries.
    Brierley CL, Brierley JA.
    Appl Microbiol Biotechnol; 2013 Sep 14; 97(17):7543-52. PubMed ID: 23877580
    [Abstract] [Full Text] [Related]

  • 58. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.
    De Michelis I, Ferella F, Beolchini F, Vegliò F.
    Waste Manag; 2009 Jan 14; 29(1):128-35. PubMed ID: 18556190
    [Abstract] [Full Text] [Related]

  • 59. Effect of sodium acetate additive on gold leaching with cyanide solution: Laboratory and semi-pilot leaching tests.
    Surimbayev B, Yessengarayev Y, Khumarbekuly Y, Bolotova L, Kanaly Y, Akzharkenov M, Zhumabai S.
    Heliyon; 2024 Aug 15; 10(15):e35805. PubMed ID: 39170320
    [Abstract] [Full Text] [Related]

  • 60. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray.
    Remonsellez F, Galleguillos F, Moreno-Paz M, Parro V, Acosta M, Demergasso C.
    Microb Biotechnol; 2009 Nov 15; 2(6):613-24. PubMed ID: 21255296
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.