These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 35761175
1. SDNN-PPI: self-attention with deep neural network effect on protein-protein interaction prediction. Li X, Han P, Wang G, Chen W, Wang S, Song T. BMC Genomics; 2022 Jun 27; 23(1):474. PubMed ID: 35761175 [Abstract] [Full Text] [Related]
2. Deep Neural Network and Extreme Gradient Boosting Based Hybrid Classifier for Improved Prediction of Protein-Protein Interaction. Mahapatra S, Gupta VR, Sahu SS, Panda G. IEEE/ACM Trans Comput Biol Bioinform; 2022 Jun 27; 19(1):155-165. PubMed ID: 33621179 [Abstract] [Full Text] [Related]
4. MARPPI: boosting prediction of protein-protein interactions with multi-scale architecture residual network. Li X, Han P, Chen W, Gao C, Wang S, Song T, Niu M, Rodriguez-Patón A. Brief Bioinform; 2023 Jan 19; 24(1):. PubMed ID: 36502435 [Abstract] [Full Text] [Related]
5. A novel conjoint triad auto covariance (CTAC) coding method for predicting protein-protein interaction based on amino acid sequence. Wang X, Wang R, Wei Y, Gui Y. Math Biosci; 2019 Jul 19; 313():41-47. PubMed ID: 31029609 [Abstract] [Full Text] [Related]
6. GTB-PPI: Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting. Yu B, Chen C, Zhou H, Liu B, Ma Q. Genomics Proteomics Bioinformatics; 2020 Oct 19; 18(5):582-592. PubMed ID: 33515750 [Abstract] [Full Text] [Related]
12. Protein-protein interaction prediction based on ordinal regression and recurrent convolutional neural networks. Xu W, Gao Y, Wang Y, Guan J. BMC Bioinformatics; 2021 Oct 08; 22(Suppl 6):485. PubMed ID: 34625020 [Abstract] [Full Text] [Related]
13. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding. Yang F, Fan K, Song D, Lin H. BMC Bioinformatics; 2020 Jul 21; 21(1):323. PubMed ID: 32693790 [Abstract] [Full Text] [Related]
14. DL-PPI: a method on prediction of sequenced protein-protein interaction based on deep learning. Wu J, Liu B, Zhang J, Wang Z, Li J. BMC Bioinformatics; 2023 Dec 14; 24(1):473. PubMed ID: 38097937 [Abstract] [Full Text] [Related]
15. Multimodal deep representation learning for protein interaction identification and protein family classification. Zhang D, Kabuka M. BMC Bioinformatics; 2019 Dec 02; 20(Suppl 16):531. PubMed ID: 31787089 [Abstract] [Full Text] [Related]
16. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY, You ZH, Meng FR, Xu SJ, Wang Y. Int J Mol Sci; 2016 May 18; 17(5):. PubMed ID: 27213337 [Abstract] [Full Text] [Related]
17. Improved Prediction of Protein-Protein Interaction Mapping on Homo Sapiens by Using Amino Acid Sequence Features in a Supervised Learning Framework. Islam MM, Alam MJ, Ahmed FF, Hasan MM, Mollah MNH. Protein Pept Lett; 2021 May 18; 28(1):74-83. PubMed ID: 32520672 [Abstract] [Full Text] [Related]