These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 35780494

  • 1. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction.
    Fritsch B, Zech TS, Bruns MP, Körner A, Khadivianazar S, Wu M, Zargar Talebi N, Virtanen S, Unruh T, Jank MPM, Spiecker E, Hutzler A.
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202803. PubMed ID: 35780494
    [Abstract] [Full Text] [Related]

  • 2. Sunlight-driving formation and characterization of size-controlled gold nanoparticles.
    Luo Y.
    J Nanosci Nanotechnol; 2007 Feb; 7(2):708-11. PubMed ID: 17450819
    [Abstract] [Full Text] [Related]

  • 3. In Situ Insights into the Nucleation and Growth Mechanisms of Gold Nanoparticles on Tobacco Mosaic Virus.
    Moreira Da Silva C, Ortiz-Peña N, Boubekeur-Lecaque L, Dušek J, Moravec T, Alloyeau D, Ha-Duong NT.
    Nano Lett; 2023 Jun 14; 23(11):5281-5287. PubMed ID: 37272864
    [Abstract] [Full Text] [Related]

  • 4. Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis.
    Meyre ME, Tréguer-Delapierre M, Faure C.
    Langmuir; 2008 May 06; 24(9):4421-5. PubMed ID: 18402491
    [Abstract] [Full Text] [Related]

  • 5. Studying the Effects of Temperature on the Nucleation and Growth of Nanoparticles by Liquid-Cell Transmission Electron Microscopy.
    Khelfa A, Nelayah J, Wang G, Ricolleau C, Alloyeau D.
    J Vis Exp; 2021 Feb 17; (168):. PubMed ID: 33682852
    [Abstract] [Full Text] [Related]

  • 6. The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens.
    Cho H, Jones MR, Nguyen SC, Hauwiller MR, Zettl A, Alivisatos AP.
    Nano Lett; 2017 Jan 11; 17(1):414-420. PubMed ID: 28026186
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis.
    Wang M, Leff AC, Li Y, Woehl TJ.
    ACS Nano; 2021 Feb 23; 15(2):2578-2588. PubMed ID: 33496576
    [Abstract] [Full Text] [Related]

  • 9. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.
    Hauwiller MR, Ondry JC, Alivisatos AP.
    J Vis Exp; 2018 May 17; (135):. PubMed ID: 29863683
    [Abstract] [Full Text] [Related]

  • 10. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures.
    Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G.
    Angew Chem Int Ed Engl; 2014 Aug 04; 53(32):8338-42. PubMed ID: 24954711
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. In Situ Liquid Cell Transmission Electron Microscopy Study of Studtite Particle Formation and Growth via Electron Beam Radiolysis.
    Kurtyka N, van Devener B, Chung BW, McDonald LW.
    ACS Omega; 2023 Dec 19; 8(50):48336-48343. PubMed ID: 38144047
    [Abstract] [Full Text] [Related]

  • 13. Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum.
    Narayanan KB, Sakthivel N.
    World J Microbiol Biotechnol; 2013 Nov 19; 29(11):2207-11. PubMed ID: 23736894
    [Abstract] [Full Text] [Related]

  • 14. Environmentally benign in situ synthesis of gold nanotapes using carboxymethyl cellulose.
    Bhattacharjee RR, Rashid MH, Mandal TK.
    J Nanosci Nanotechnol; 2008 Jul 19; 8(7):3610-5. PubMed ID: 19051918
    [Abstract] [Full Text] [Related]

  • 15. Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy.
    Bae Y, Lim K, Kim S, Kang D, Kim BH, Kim J, Kang S, Jeon S, Cho J, Lee WB, Lee WC, Park J.
    Nano Lett; 2020 Dec 09; 20(12):8704-8710. PubMed ID: 33186041
    [Abstract] [Full Text] [Related]

  • 16. Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy.
    Couasnon T, Fritsch B, Jank MPM, Blukis R, Hutzler A, Benning LG.
    Adv Sci (Weinh); 2023 Sep 09; 10(25):e2301904. PubMed ID: 37439408
    [Abstract] [Full Text] [Related]

  • 17. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates.
    Ghodake GS, Deshpande NG, Lee YP, Jin ES.
    Colloids Surf B Biointerfaces; 2010 Feb 01; 75(2):584-9. PubMed ID: 19879738
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. In situ preparation of gold-polyester nanoparticles for biomedical imaging.
    Attia MF, Ranasinghe M, Akasov R, Anker JN, Whitehead DC, Alexis F.
    Biomater Sci; 2020 Jun 07; 8(11):3032-3043. PubMed ID: 32314777
    [Abstract] [Full Text] [Related]

  • 20. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution.
    Khelfa A, Nelayah J, Amara H, Wang G, Ricolleau C, Alloyeau D.
    Adv Mater; 2021 Sep 07; 33(38):e2102514. PubMed ID: 34338365
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.