These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 35784031

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies.
    Sculfort O, de Castro ECP, Kozak KM, Bak S, Elias M, Nay B, Llaurens V.
    Ecol Evol; 2020 Mar; 10(5):2677-2694. PubMed ID: 32185010
    [Abstract] [Full Text] [Related]

  • 4. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration.
    Pinheiro de Castro ÉC, Demirtas R, Orteu A, Olsen CE, Motawie MS, Zikan Cardoso M, Zagrobelny M, Bak S.
    Insect Biochem Mol Biol; 2020 Jan; 116():103259. PubMed ID: 31698083
    [Abstract] [Full Text] [Related]

  • 5. Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything?
    Arias M, Meichanetzoglou A, Elias M, Rosser N, de-Silva DL, Nay B, Llaurens V.
    BMC Evol Biol; 2016 Dec 15; 16(1):272. PubMed ID: 27978820
    [Abstract] [Full Text] [Related]

  • 6. Phenotypic plasticity in chemical defence of butterflies allows usage of diverse host plants.
    de Castro ÉCP, Musgrove J, Bak S, McMillan WO, Jiggins CD.
    Biol Lett; 2021 Mar 15; 17(3):20200863. PubMed ID: 33784874
    [Abstract] [Full Text] [Related]

  • 7. The arms race between heliconiine butterflies and Passiflora plants - new insights on an ancient subject.
    de Castro ÉCP, Zagrobelny M, Cardoso MZ, Bak S.
    Biol Rev Camb Philos Soc; 2018 Feb 15; 93(1):555-573. PubMed ID: 28901723
    [Abstract] [Full Text] [Related]

  • 8. Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants.
    Pinheiro de Castro ÉC, Zagrobelny M, Zurano JP, Zikan Cardoso M, Feyereisen R, Bak S.
    Ecol Evol; 2019 May 15; 9(9):5079-5093. PubMed ID: 31110663
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies.
    Engler-Chaouat HS, Gilbert LE.
    J Chem Ecol; 2007 Jan 15; 33(1):25-42. PubMed ID: 17151910
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. EVOLUTION OF GREGARIOUSNESS IN APOSEMATIC BUTTERFLY LARVAE: A PHYLOGENETIC ANALYSIS.
    Sillén-Tullberg B.
    Evolution; 1988 Mar 15; 42(2):293-305. PubMed ID: 28567849
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Evolution of ontogenic change in color defenses of swallowtail butterflies.
    Gaitonde N, Joshi J, Kunte K.
    Ecol Evol; 2018 Oct 15; 8(19):9751-9763. PubMed ID: 30386572
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The roles of hybridization and habitat fragmentation in the evolution of Brazil's enigmatic longwing butterflies, Heliconius nattereri and H. hermathena.
    Massardo D, VanKuren NW, Nallu S, Ramos RR, Ribeiro PG, Silva-Brandão KL, Brandão MM, Lion MB, Freitas AVL, Cardoso MZ, Kronforst MR.
    BMC Biol; 2020 Jul 03; 18(1):84. PubMed ID: 32620168
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.