These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 35805747
1. Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System. Kong YK, Choi KH, Cho MU, Kim SY, Kim MJ, Shim JW, Park SS, Kim KR, Seo MT, Chae HS, Shim HH. Int J Environ Res Public Health; 2022 Jul 01; 19(13):. PubMed ID: 35805747 [Abstract] [Full Text] [Related]
2. Guidelines for Working Heights of the Lower-Limb Exoskeleton (CEX) Based on Ergonomic Evaluations. Kong YK, Park CW, Cho MU, Kim SY, Kim MJ, Hyun DJ, Bae K, Choi JK, Ko SM, Choi KH. Int J Environ Res Public Health; 2021 May 13; 18(10):. PubMed ID: 34068352 [Abstract] [Full Text] [Related]
3. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities. de Vries AW, Krause F, de Looze MP. Ergonomics; 2021 Jun 13; 64(6):712-721. PubMed ID: 33402050 [Abstract] [Full Text] [Related]
4. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks. Kong YK, Kim JH, Shim HH, Shim JW, Park SS, Choi KH. Appl Ergon; 2023 May 13; 109():103965. PubMed ID: 36645995 [Abstract] [Full Text] [Related]
5. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. Kermavnar T, de Vries AW, de Looze MP, O'Sullivan LW. Ergonomics; 2021 Jun 13; 64(6):685-711. PubMed ID: 33369518 [Abstract] [Full Text] [Related]
6. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height. van der Have A, Rossini M, Rodriguez-Guerrero C, Van Rossom S, Jonkers I. Appl Ergon; 2022 Sep 13; 103():103800. PubMed ID: 35598416 [Abstract] [Full Text] [Related]
7. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions. Kong YK, Park SS, Shim JW, Choi KH, Shim HH, Kia K, Kim JH. Appl Ergon; 2023 May 13; 109():103982. PubMed ID: 36739780 [Abstract] [Full Text] [Related]
8. Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. Duc S, Bertucci W, Pernin JN, Grappe F. J Electromyogr Kinesiol; 2008 Feb 13; 18(1):116-27. PubMed ID: 17123833 [Abstract] [Full Text] [Related]
9. Using a Passive Back Exoskeleton During a Simulated Sorting Task: Influence on Muscle Activity, Posture, and Heart Rate. Bär M, Luger T, Seibt R, Rieger MA, Steinhilber B. Hum Factors; 2024 Jan 13; 66(1):40-55. PubMed ID: 35225011 [Abstract] [Full Text] [Related]
10. Effects of a passive upper extremity exoskeleton for overhead tasks. Yin P, Yang L, Qu S, Wang C. J Electromyogr Kinesiol; 2020 Dec 13; 55():102478. PubMed ID: 33075712 [Abstract] [Full Text] [Related]
11. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task. Arnoux B, Farr A, Boccara V, Vignais N. Int J Environ Res Public Health; 2023 Feb 10; 20(4):. PubMed ID: 36833846 [Abstract] [Full Text] [Related]
12. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Luger T, Seibt R, Cobb TJ, Rieger MA, Steinhilber B. Appl Ergon; 2019 Oct 10; 80():152-160. PubMed ID: 31280799 [Abstract] [Full Text] [Related]
13. Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks. Musso M, Oliveira AS, Bai S. Appl Ergon; 2024 Jan 10; 114():104158. PubMed ID: 37890312 [Abstract] [Full Text] [Related]
14. Evaluation of a passive exoskeleton for static upper limb activities. Huysamen K, Bosch T, de Looze M, Stadler KS, Graf E, O'Sullivan LW. Appl Ergon; 2018 Jul 10; 70():148-155. PubMed ID: 29866305 [Abstract] [Full Text] [Related]
15. Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks. Blanco A, Catalán JM, Díez JA, García JV, Lobato E, García-Aracil N. Sensors (Basel); 2019 Aug 02; 19(15):. PubMed ID: 31382363 [Abstract] [Full Text] [Related]
16. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant. Iranzo S, Piedrabuena A, Iordanov D, Martinez-Iranzo U, Belda-Lois JM. Appl Ergon; 2020 Sep 02; 87():103120. PubMed ID: 32310110 [Abstract] [Full Text] [Related]
17. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Theurel J, Desbrosses K, Roux T, Savescu A. Appl Ergon; 2018 Feb 02; 67():211-217. PubMed ID: 29122192 [Abstract] [Full Text] [Related]
18. Shoulder muscle activity and perceived comfort of industry workers using a commercial upper limb exoskeleton for simulated tasks. Pinho JP, Forner-Cordero A. Appl Ergon; 2022 May 02; 101():103718. PubMed ID: 35202960 [Abstract] [Full Text] [Related]
19. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks. Schwartz M, Desbrosses K, Theurel J, Mornieux G. Int J Environ Res Public Health; 2023 Jul 28; 20(15):. PubMed ID: 37569010 [Abstract] [Full Text] [Related]
20. Evaluation of a spring-loaded upper-limb exoskeleton in cleaning activities. Pacifico I, Aprigliano F, Parri A, Cannillo G, Melandri I, Sabatini AM, Violante FS, Molteni F, Giovacchini F, Vitiello N, Crea S. Appl Ergon; 2023 Jan 28; 106():103877. PubMed ID: 36095895 [Abstract] [Full Text] [Related] Page: [Next] [New Search]