These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 35818077
41. Lung Recruitment, Individualized PEEP, and Prone Position Ventilation for COVID-19-Associated Severe ARDS: A Single Center Observational Study. Sang L, Zheng X, Zhao Z, Zhong M, Jiang L, Huang Y, Liu X, Li Y, Zhang D. Front Med (Lausanne); 2020; 7():603943. PubMed ID: 33553203 [Abstract] [Full Text] [Related]
42. Comparison of pleural and esophageal pressure in supine and prone positions in a porcine model of acute respiratory distress syndrome. Terzi N, Bayat S, Noury N, Turbil E, Habre W, Argaud L, Cour M, Louis B, Guérin C. J Appl Physiol (1985); 2020 Jun 01; 128(6):1617-1625. PubMed ID: 32437245 [Abstract] [Full Text] [Related]
43. Real-time effects of PEEP and tidal volume on regional ventilation and perfusion in experimental lung injury. Borges JB, Cronin JN, Crockett DC, Hedenstierna G, Larsson A, Formenti F. Intensive Care Med Exp; 2020 Feb 21; 8(1):10. PubMed ID: 32086632 [Abstract] [Full Text] [Related]
44. Homogenizing effect of PEEP on tidal volume distribution during neurally adjusted ventilatory assist: study of an animal model of acute respiratory distress syndrome. Widing H, Chiodaroli E, Liggieri F, Mariotti PS, Hallén K, Perchiazzi G. Respir Res; 2022 Nov 24; 23(1):324. PubMed ID: 36419132 [Abstract] [Full Text] [Related]
46. Absolute values of regional ventilation-perfusion mismatch in patients with ARDS monitored by electrical impedance tomography and the role of dead space and shunt compensation. Leali M, Marongiu I, Spinelli E, Chiavieri V, Perez J, Panigada M, Grasselli G, Mauri T. Crit Care; 2024 Jul 15; 28(1):241. PubMed ID: 39010228 [Abstract] [Full Text] [Related]
47. Positive End-Expiratory Pressure, Pleural Pressure, and Regional Compliance during Pronation: An Experimental Study. Katira BH, Osada K, Engelberts D, Bastia L, Damiani LF, Li X, Chen H, Yoshida T, Amato MBP, Ferguson ND, Post M, Kavanagh BP, Brochard LJ. Am J Respir Crit Care Med; 2021 May 15; 203(10):1266-1274. PubMed ID: 33406012 [Abstract] [Full Text] [Related]
48. Bedside Contribution of Electrical Impedance Tomography to Setting Positive End-Expiratory Pressure for Extracorporeal Membrane Oxygenation-treated Patients with Severe Acute Respiratory Distress Syndrome. Franchineau G, Bréchot N, Lebreton G, Hekimian G, Nieszkowska A, Trouillet JL, Leprince P, Chastre J, Luyt CE, Combes A, Schmidt M. Am J Respir Crit Care Med; 2017 Aug 15; 196(4):447-457. PubMed ID: 28103448 [Abstract] [Full Text] [Related]
49. Effect of positive end-expiratory-pressure on regional ventilation in patients with acute lung injury evaluated by electrical impedance tomography. Hinz J, Moerer O, Neumann P, Dudykevych T, Hellige G, Quintel M. Eur J Anaesthesiol; 2005 Nov 15; 22(11):817-25. PubMed ID: 16225714 [Abstract] [Full Text] [Related]
50. Exploring alveolar recruitability using positive end-expiratory pressure in mice overexpressing TGF-β1: a structure-function analysis. Roeder F, Röpke T, Steinmetz LK, Kolb M, Maus UA, Smith BJ, Knudsen L. Sci Rep; 2024 Apr 06; 14(1):8080. PubMed ID: 38582767 [Abstract] [Full Text] [Related]
51. Potential for the lung recruitment and the risk of lung overdistension during 21 days of mechanical ventilation in patients with COVID-19 after noninvasive ventilation failure: the COVID-VENT observational trial. Yaroshetskiy AI, Avdeev SN, Politov ME, Nogtev PV, Beresneva VG, Sorokin YD, Konanykhin VD, Krasnoshchekova AP, Merzhoeva ZM, Tsareva NA, Trushenko NV, Mandel IA, Yavorovskiy AG. BMC Anesthesiol; 2022 Mar 04; 22(1):59. PubMed ID: 35246024 [Abstract] [Full Text] [Related]
52. Comparison of optimal positive end-expiratory pressure and recruitment maneuvers during lung-protective mechanical ventilation in patients with acute lung injury/acute respiratory distress syndrome. Badet M, Bayle F, Richard JC, Guérin C. Respir Care; 2009 Jul 04; 54(7):847-54. PubMed ID: 19558735 [Abstract] [Full Text] [Related]
53. The Effect of Positive End-Expiratory Pressure on Pulmonary Vascular Resistance Depends on Lung Recruitability in Patients with Acute Respiratory Distress Syndrome. Cappio Borlino S, Hagry J, Lai C, Rocca E, Fouqué G, Rosalba D, Fasan M, Shi R, Recanatini A, Cisterna I, Barotti M, Pham T, Teboul JL, Monnet X. Am J Respir Crit Care Med; 2024 Oct 01; 210(7):900-907. PubMed ID: 38924520 [Abstract] [Full Text] [Related]
54. Model-based optimal PEEP in mechanically ventilated ARDS patients in the intensive care unit. Sundaresan A, Chase JG, Shaw GM, Chiew YS, Desaive T. Biomed Eng Online; 2011 Jul 27; 10():64. PubMed ID: 21794116 [Abstract] [Full Text] [Related]
55. High levels of positive end-expiratory pressure preserve diaphragmatic contractility during acute respiratory distress syndrome in rats. Jiao GY, Hao LY, Chen L, Gao CE, Feng R, Hu HY, Tan ST, Wang MM, Zhong B, Wang PP. Exp Physiol; 2015 Aug 27; 100(8):967-76. PubMed ID: 26053378 [Abstract] [Full Text] [Related]
56. Lung opening and closing during ventilation of acute respiratory distress syndrome. Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, Russo SG, Cornejo R, Bugedo G, Carlesso E, Russo R, Caspani L, Gattinoni L. Am J Respir Crit Care Med; 2010 Mar 15; 181(6):578-86. PubMed ID: 19910610 [Abstract] [Full Text] [Related]
57. High Pleural Pressure Prevents Alveolar Overdistension and Hemodynamic Collapse in Acute Respiratory Distress Syndrome with Class III Obesity. A Clinical Trial. De Santis Santiago R, Teggia Droghi M, Fumagalli J, Marrazzo F, Florio G, Grassi LG, Gomes S, Morais CCA, Ramos OPS, Bottiroli M, Pinciroli R, Imber DA, Bagchi A, Shelton K, Sonny A, Bittner EA, Amato MBP, Kacmarek RM, Berra L, Lung Rescue Team Investigators. Am J Respir Crit Care Med; 2021 Mar 01; 203(5):575-584. PubMed ID: 32876469 [Abstract] [Full Text] [Related]
58. [Effect of positive end expiratory pressure level selection in prone position ventilation on lung recruitment and inflammatory factors in patients with severe acute respiratory distress syndrome]. Guo J, Xu J. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2020 Jun 01; 32(6):702-706. PubMed ID: 32684216 [Abstract] [Full Text] [Related]
59. Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study. Santini A, Mauri T, Dalla Corte F, Spinelli E, Pesenti A. Crit Care; 2019 Nov 21; 23(1):369. PubMed ID: 31752952 [Abstract] [Full Text] [Related]
60. Effects of pressure support ventilation on ventilator-induced lung injury in mild acute respiratory distress syndrome depend on level of positive end-expiratory pressure: A randomised animal study. Magalhães PAF, Padilha GA, Moraes L, Santos CL, Maia LA, Braga CL, Duarte MDCMB, Andrade LB, Schanaider A, Capellozzi VL, Huhle R, Gama de Abreu M, Pelosi P, Rocco PRM, Silva PL. Eur J Anaesthesiol; 2018 Apr 21; 35(4):298-306. PubMed ID: 29324568 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]