These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 35819621

  • 1. Spray-Induced Gene Silencing to Study Gene Function in Phytophthora.
    Sundararajan P, Kalyandurg PB, Liu Q, Chawade A, Whisson SC, Vetukuri RR.
    Methods Mol Biol; 2022; 2536():459-474. PubMed ID: 35819621
    [Abstract] [Full Text] [Related]

  • 2. Spraying of dsRNA molecules derived from Phytophthora infestans, along with nanoclay carriers as a proof of concept for developing novel protection strategy for potato late blight.
    S S, Sharma S, Bairwa A, Tomar M, Kumar R, Bhardwaj V, Jeevalatha A, Bakade R, Salaria N, Thakur K, Singh BP, Chakrabarti SK.
    Pest Manag Sci; 2022 Jul; 78(7):3183-3192. PubMed ID: 35478320
    [Abstract] [Full Text] [Related]

  • 3. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E, Kamal NM, Tsujimoto H.
    Int J Mol Sci; 2021 Jul 19; 22(14):. PubMed ID: 34299307
    [Abstract] [Full Text] [Related]

  • 4. Spray-Induced Gene Silencing: a Powerful Innovative Strategy for Crop Protection.
    Wang M, Jin H.
    Trends Microbiol; 2017 Jan 19; 25(1):4-6. PubMed ID: 27923542
    [Abstract] [Full Text] [Related]

  • 5. Cross-kingdom RNA trafficking and environmental RNAi-nature's blueprint for modern crop protection strategies.
    Cai Q, He B, Kogel KH, Jin H.
    Curr Opin Microbiol; 2018 Dec 19; 46():58-64. PubMed ID: 29549797
    [Abstract] [Full Text] [Related]

  • 6. Spray-Induced Silencing of Pathogenicity Gene MoDES1 via Exogenous Double-Stranded RNA Can Confer Partial Resistance Against Fungal Blast in Rice.
    Sarkar A, Roy-Barman S.
    Front Plant Sci; 2021 Dec 19; 12():733129. PubMed ID: 34899771
    [Abstract] [Full Text] [Related]

  • 7. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake.
    Hamby R, Wang M, Qiao L, Jin H.
    Methods Mol Biol; 2020 Dec 19; 2166():215-225. PubMed ID: 32710411
    [Abstract] [Full Text] [Related]

  • 8. RNA Interference: Promising Approach to Combat Plant Viruses.
    Akbar S, Wei Y, Zhang MQ.
    Int J Mol Sci; 2022 May 10; 23(10):. PubMed ID: 35628126
    [Abstract] [Full Text] [Related]

  • 9. Mycovirus-encoded suppressors of RNA silencing: Possible allies or enemies in the use of RNAi to control fungal disease in crops.
    Rodriguez Coy L, Plummer KM, Khalifa ME, MacDiarmid RM.
    Front Fungal Biol; 2022 May 10; 3():965781. PubMed ID: 37746227
    [Abstract] [Full Text] [Related]

  • 10. RNA Interference Past and Future Applications in Plants.
    Koeppe S, Kawchuk L, Kalischuk M.
    Int J Mol Sci; 2023 Jun 05; 24(11):. PubMed ID: 37298705
    [Abstract] [Full Text] [Related]

  • 11. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications.
    Hoang BTL, Fletcher SJ, Brosnan CA, Ghodke AB, Manzie N, Mitter N.
    Int J Mol Sci; 2022 Jun 14; 23(12):. PubMed ID: 35743077
    [Abstract] [Full Text] [Related]

  • 12. RNA-Spray-Mediated Silencing of Fusarium graminearum AGO and DCL Genes Improve Barley Disease Resistance.
    Werner BT, Gaffar FY, Schuemann J, Biedenkopf D, Koch AM.
    Front Plant Sci; 2020 Jun 14; 11():476. PubMed ID: 32411160
    [Abstract] [Full Text] [Related]

  • 13. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake.
    Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H.
    Plant Biotechnol J; 2021 Sep 14; 19(9):1756-1768. PubMed ID: 33774895
    [Abstract] [Full Text] [Related]

  • 14. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection.
    Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H.
    Plant Biotechnol J; 2023 Apr 14; 21(4):854-865. PubMed ID: 36601704
    [Abstract] [Full Text] [Related]

  • 15. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing.
    Song XS, Gu KX, Duan XX, Xiao XM, Hou YP, Duan YB, Wang JX, Yu N, Zhou MG.
    Mol Plant Pathol; 2018 Dec 14; 19(12):2543-2560. PubMed ID: 30027625
    [Abstract] [Full Text] [Related]

  • 16. BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea.
    Niño-Sánchez J, Sambasivam PT, Sawyer A, Hamby R, Chen A, Czislowski E, Li P, Manzie N, Gardiner DM, Ford R, Xu ZP, Mitter N, Jin H.
    J Integr Plant Biol; 2022 Nov 14; 64(11):2187-2198. PubMed ID: 36040241
    [Abstract] [Full Text] [Related]

  • 17. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes.
    Höfle L, Biedenkopf D, Werner BT, Shrestha A, Jelonek L, Koch A.
    RNA Biol; 2020 Apr 14; 17(4):463-473. PubMed ID: 31814508
    [Abstract] [Full Text] [Related]

  • 18. Exogenous dsRNA Induces RNA Interference of a Chalcone Synthase Gene in Arabidopsis thaliana.
    Nityagovsky NN, Kiselev KV, Suprun AR, Dubrovina AS.
    Int J Mol Sci; 2022 May 10; 23(10):. PubMed ID: 35628133
    [Abstract] [Full Text] [Related]

  • 19. Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle.
    He W, Xu W, Xu L, Fu K, Guo W, Bock R, Zhang J.
    J Exp Bot; 2020 May 09; 71(9):2670-2677. PubMed ID: 31903493
    [Abstract] [Full Text] [Related]

  • 20. Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum.
    Schlemmer T, Lischka R, Wegner L, Ehlers K, Biedenkopf D, Koch A.
    Fungal Biol Biotechnol; 2022 Jul 14; 9(1):14. PubMed ID: 35836276
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.