These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


232 related items for PubMed ID: 35840373

  • 1. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces.
    Lee E, Müller-Plathe F.
    J Chem Phys; 2022 Jul 14; 157(2):024701. PubMed ID: 35840373
    [Abstract] [Full Text] [Related]

  • 2. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces.
    Beitollahpoor M, Farzam M, Pesika NS.
    J Colloid Interface Sci; 2023 Oct 15; 648():161-168. PubMed ID: 37301141
    [Abstract] [Full Text] [Related]

  • 3. Contact-Angle Hysteresis and Contact-Line Friction on Slippery Liquid-like Surfaces.
    Barrio-Zhang H, Ruiz-Gutiérrez É, Armstrong S, McHale G, Wells GG, Ledesma-Aguilar R.
    Langmuir; 2020 Dec 15; 36(49):15094-15101. PubMed ID: 33258609
    [Abstract] [Full Text] [Related]

  • 4. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L, Cheng J.
    Nanoscale; 2018 Apr 05; 10(14):6426-6436. PubMed ID: 29564459
    [Abstract] [Full Text] [Related]

  • 5. Droplet Friction on Superhydrophobic Surfaces Scales With Liquid-Solid Contact Fraction.
    Lepikko S, Turkki V, Koskinen T, Raju R, Jokinen V, Kiseleva MS, Rantataro S, Timonen JVI, Backholm M, Tittonen I, Ras RHA.
    Small; 2024 Sep 17; ():e2405335. PubMed ID: 39286993
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie-Baxter Equation.
    Myronyuk O, Vanagas E, Rodin AM, Wesolowski M.
    Materials (Basel); 2024 Aug 31; 17(17):. PubMed ID: 39274712
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K, Li Z, Maxey M, Chen S, Karniadakis GE.
    Langmuir; 2019 Feb 12; 35(6):2431-2442. PubMed ID: 30640480
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G, Orme BV, Wells GG, Ledesma-Aguilar R.
    Langmuir; 2019 Mar 19; 35(11):4197-4204. PubMed ID: 30759342
    [Abstract] [Full Text] [Related]

  • 20. Trapped liquid drop at the end of capillary.
    Wang Z, Yen HY, Chang CC, Sheng YJ, Tsao HK.
    Langmuir; 2013 Oct 01; 29(39):12154-61. PubMed ID: 24004041
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.