These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 35841186

  • 21. Enhanced serotonin availability amplifies fatigue perception and modulates the TMS-induced silent period during sustained low-intensity elbow flexions.
    Thorstensen JR, Taylor JL, Tucker MG, Kavanagh JJ.
    J Physiol; 2020 Jul; 598(13):2685-2701. PubMed ID: 32243582
    [Abstract] [Full Text] [Related]

  • 22. Corticospinal output and loss of force during motor fatigue.
    Rösler KM, Scheidegger O, Magistris MR.
    Exp Brain Res; 2009 Aug; 197(2):111-23. PubMed ID: 19572125
    [Abstract] [Full Text] [Related]

  • 23. Muscarinic acetylcholine activity modulates cortical silent period, but not motor evoked potentials, during muscle contractions.
    Dempsey LM, Kavanagh JJ.
    Exp Brain Res; 2023 Jun; 241(6):1543-1553. PubMed ID: 37103494
    [Abstract] [Full Text] [Related]

  • 24. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL.
    J Physiol; 2006 Jun 01; 573(Pt 2):511-23. PubMed ID: 16556656
    [Abstract] [Full Text] [Related]

  • 25. Voluntary activation does not differ when using two different methods to determine transcranial magnetic stimulator output.
    Bruce CD, Magnuson JR, McNeil CJ.
    J Neurophysiol; 2023 Oct 01; 130(4):925-930. PubMed ID: 37671448
    [Abstract] [Full Text] [Related]

  • 26. Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions.
    Goodall S, Ross EZ, Romer LM.
    J Appl Physiol (1985); 2010 Dec 01; 109(6):1842-51. PubMed ID: 20813979
    [Abstract] [Full Text] [Related]

  • 27. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise.
    Jubeau M, Rupp T, Perrey S, Temesi J, Wuyam B, Levy P, Verges S, Millet GY.
    PLoS One; 2014 Dec 01; 9(2):e89157. PubMed ID: 24586559
    [Abstract] [Full Text] [Related]

  • 28. Enhanced availability of serotonin increases activation of unfatigued muscle but exacerbates central fatigue during prolonged sustained contractions.
    Kavanagh JJ, McFarland AJ, Taylor JL.
    J Physiol; 2019 Jan 01; 597(1):319-332. PubMed ID: 30328105
    [Abstract] [Full Text] [Related]

  • 29. Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors.
    Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL.
    J Physiol; 2013 Jul 15; 591(14):3591-604. PubMed ID: 23652589
    [Abstract] [Full Text] [Related]

  • 30. Corticospinal excitability is altered similarly following concentric and eccentric maximal contractions.
    Clos P, Garnier Y, Martin A, Lepers R.
    Eur J Appl Physiol; 2020 Jun 15; 120(6):1457-1469. PubMed ID: 32347373
    [Abstract] [Full Text] [Related]

  • 31. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A, Baudry S, Duchateau J.
    Neuroscience; 2016 May 13; 322():94-103. PubMed ID: 26892298
    [Abstract] [Full Text] [Related]

  • 32. Corticospinal and peripheral responses to heat-induced hypo-hydration: potential physiological mechanisms and implications for neuromuscular function.
    Uddin N, Tallent J, Patterson SD, Goodall S, Waldron M.
    Eur J Appl Physiol; 2022 Aug 13; 122(8):1797-1810. PubMed ID: 35362800
    [Abstract] [Full Text] [Related]

  • 33. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions.
    Škarabot J, Ansdell P, Brownstein CG, Hicks KM, Howatson G, Goodall S, Durbaba R.
    J Appl Physiol (1985); 2019 Apr 01; 126(4):1015-1031. PubMed ID: 30730812
    [Abstract] [Full Text] [Related]

  • 34. Corticospinal excitability during shortening and lengthening actions with incremental torque output.
    Škarabot J, Tallent J, Goodall S, Durbaba R, Howatson G.
    Exp Physiol; 2018 Dec 01; 103(12):1586-1592. PubMed ID: 30286253
    [Abstract] [Full Text] [Related]

  • 35. Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males.
    Goodall S, Howatson G, Thomas K.
    Exp Brain Res; 2018 Feb 01; 236(2):463-473. PubMed ID: 29214392
    [Abstract] [Full Text] [Related]

  • 36. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL.
    Exp Physiol; 2016 Dec 01; 101(12):1552-1564. PubMed ID: 27652591
    [Abstract] [Full Text] [Related]

  • 37. Effects of sleep deprivation on perceived and performance fatigability in females: An exploratory study.
    Magnuson JR, Kang HJ, Debenham MIB, McNeil CJ, Dalton BH.
    Eur J Sport Sci; 2023 Sep 01; 23(9):1922-1931. PubMed ID: 35989687
    [Abstract] [Full Text] [Related]

  • 38. Acute effects of conventional versus wide-pulse neuromuscular electrical stimulation on quadriceps evoked torque and neuromuscular function.
    Espeit L, Luneau E, Brownstein CG, Gondin J, Millet GY, Rozand V, Maffiuletti NA, Lapole T.
    Scand J Med Sci Sports; 2023 Aug 01; 33(8):1307-1321. PubMed ID: 37067173
    [Abstract] [Full Text] [Related]

  • 39. Effects of pre-induced fatigue vs. concurrent pain on exercise tolerance, neuromuscular performance and corticospinal responses of locomotor muscles.
    Aboodarda SJ, Iannetta D, Emami N, Varesco G, Murias JM, Millet GY.
    J Physiol; 2020 Jan 01; 598(2):285-302. PubMed ID: 31826296
    [Abstract] [Full Text] [Related]

  • 40. Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle.
    Post M, Bayrak S, Kernell D, Zijdewind I.
    J Appl Physiol (1985); 2008 Jul 01; 105(1):70-82. PubMed ID: 18450978
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.