These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 35847453
1. Impact of Holding a Badminton Racket on Spatio-Temporal and Kinetic Parameters During Manual Wheelchair Propulsion. Alberca I, Chénier F, Astier M, Combet M, Bakatchina S, Brassart F, Vallier JM, Pradon D, Watier B, Faupin A. Front Sports Act Living; 2022; 4():862760. PubMed ID: 35847453 [Abstract] [Full Text] [Related]
2. Sprint performance and force application of tennis players during manual wheelchair propulsion with and without holding a tennis racket. Alberca I, Chénier F, Astier M, Watelain É, Vallier JM, Pradon D, Faupin A. PLoS One; 2022; 17(2):e0263392. PubMed ID: 35120157 [Abstract] [Full Text] [Related]
3. Effect of holding a racket on propulsion technique of wheelchair tennis players. de Groot S, Bos F, Koopman J, Hoekstra AE, Vegter RJK. Scand J Med Sci Sports; 2017 Sep; 27(9):918-924. PubMed ID: 27230534 [Abstract] [Full Text] [Related]
4. Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability. Eydieux N, Hybois S, Siegel A, Bascou J, Vaslin P, Pillet H, Fodé P, Sauret C. Disabil Rehabil Assist Technol; 2020 Apr; 15(3):305-313. PubMed ID: 30786787 [Abstract] [Full Text] [Related]
5. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics. Mallakzadeh M, Akbari H. J Med Signals Sens; 2014 Oct; 4(4):256-66. PubMed ID: 25426429 [Abstract] [Full Text] [Related]
6. Impact of dribbling on spatiotemporal and kinetic parameters in wheelchair basketball athletes. Chénier F, Alberca I, Marquis E, Gagnon DH, Faupin A. Clin Biomech (Bristol); 2022 Jan; 91():105545. PubMed ID: 34915435 [Abstract] [Full Text] [Related]
7. Learning of Wheelchair Racing Propulsion Skills Over Three Weeks of Wheeling Practice on an Instrumented Ergometer in Able-Bodied Novices. de Klerk R, van der Jagt G, Veeger D, van der Woude L, Vegter R. Front Rehabil Sci; 2022 Jan; 3():777085. PubMed ID: 36188930 [Abstract] [Full Text] [Related]
8. Effect of Haptic Training During Manual Wheelchair Propulsion on Shoulder Joint Reaction Moments. Aissaoui R, Gagnon D. Front Rehabil Sci; 2022 Jan; 3():827534. PubMed ID: 36188985 [Abstract] [Full Text] [Related]
9. Estimating pushrim temporal and kinetic measures using an instrumented treadmill during wheelchair propulsion: A concurrent validity study. Gagnon DH, Jouval C, Chénier F. J Biomech; 2016 Jun 14; 49(9):1976-1982. PubMed ID: 27178022 [Abstract] [Full Text] [Related]
10. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill. Vegter RJ, Lamoth CJ, de Groot S, Veeger DH, van der Woude LH. J Neuroeng Rehabil; 2013 Jan 29; 10():9. PubMed ID: 23360756 [Abstract] [Full Text] [Related]
11. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles. Rice I, Gagnon D, Gallagher J, Boninger M. J Spinal Cord Med; 2010 Jan 29; 33(1):33-42. PubMed ID: 20397442 [Abstract] [Full Text] [Related]
12. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer JW, van der Woude LH, Veeger DH. J Neuroeng Rehabil; 2015 Mar 10; 12():26. PubMed ID: 25889389 [Abstract] [Full Text] [Related]
13. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair. Hwang S, Lin YS, Hogaboom NS, Wang LH, Koontz AM. Biomed Tech (Berl); 2017 Aug 28; 62(4):439-445. PubMed ID: 27639264 [Abstract] [Full Text] [Related]
14. Preliminary outcomes of the SmartWheel Users' Group database: a proposed framework for clinicians to objectively evaluate manual wheelchair propulsion. Cowan RE, Boninger ML, Sawatzky BJ, Mazoyer BD, Cooper RA. Arch Phys Med Rehabil; 2008 Feb 28; 89(2):260-8. PubMed ID: 18226649 [Abstract] [Full Text] [Related]
15. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment. le Rütte TA, Trigo F, Bessems L, van der Woude LHV, Vegter RJK. J Neuroeng Rehabil; 2022 Mar 18; 19(1):30. PubMed ID: 35300710 [Abstract] [Full Text] [Related]
16. Scapular kinematics during manual wheelchair propulsion in able-bodied participants. Bekker MJ, Vegter RJK, van der Scheer JW, Hartog J, de Groot S, de Vries W, Arnet U, van der Woude LHV, Veeger DHEJ. Clin Biomech (Bristol); 2018 May 18; 54():54-61. PubMed ID: 29554550 [Abstract] [Full Text] [Related]
17. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion. Soltau SL, Slowik JS, Requejo PS, Mulroy SJ, Neptune RR. Front Bioeng Biotechnol; 2015 May 18; 3():86. PubMed ID: 26125019 [Abstract] [Full Text] [Related]
18. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach. Richter WM. Med Eng Phys; 2001 Dec 18; 23(10):707-12. PubMed ID: 11801412 [Abstract] [Full Text] [Related]
19. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions. de Klerk R, Velhorst V, Veeger DHEJ, van der Woude LHV, Vegter RJK. J Neuroeng Rehabil; 2020 Oct 17; 17(1):136. PubMed ID: 33069257 [Abstract] [Full Text] [Related]
20. Effect of workload setting on propulsion technique in handrim wheelchair propulsion. van Drongelen S, Arnet U, Veeger DH, van der Woude LH. Med Eng Phys; 2013 Mar 17; 35(3):283-8. PubMed ID: 22910103 [Abstract] [Full Text] [Related] Page: [Next] [New Search]