These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


326 related items for PubMed ID: 35850328

  • 1. Production of PETase by engineered Yarrowia lipolytica for efficient poly(ethylene terephthalate) biodegradation.
    Kosiorowska KE, Moreno AD, Iglesias R, Leluk K, Mirończuk AM.
    Sci Total Environ; 2022 Nov 10; 846():157358. PubMed ID: 35850328
    [Abstract] [Full Text] [Related]

  • 2. Development of a Targeted Gene Disruption System in the Poly(Ethylene Terephthalate)-Degrading Bacterium Ideonella sakaiensis and Its Applications to PETase and MHETase Genes.
    Hachisuka SI, Nishii T, Yoshida S.
    Appl Environ Microbiol; 2021 Aug 26; 87(18):e0002021. PubMed ID: 34260304
    [Abstract] [Full Text] [Related]

  • 3. Metabolic engineering of Yarrowia lipolytica for poly(ethylene terephthalate) degradation.
    Kosiorowska KE, Biniarz P, Dobrowolski A, Leluk K, Mirończuk AM.
    Sci Total Environ; 2022 Jul 20; 831():154841. PubMed ID: 35358523
    [Abstract] [Full Text] [Related]

  • 4. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex.
    Hwang DH, Lee ME, Cho BH, Oh JW, You SK, Ko YJ, Hyeon JE, Han SO.
    Sci Total Environ; 2022 Oct 10; 842():156890. PubMed ID: 35753492
    [Abstract] [Full Text] [Related]

  • 5. Enzyme selection, optimization, and production toward biodegradation of post-consumer poly(ethylene terephthalate) at scale.
    Soong YV, Abid U, Chang AC, Ayafor C, Patel A, Qin J, Xu J, Lawton C, Wong HW, Sobkowicz MJ, Xie D.
    Biotechnol J; 2023 Dec 10; 18(12):e2300119. PubMed ID: 37594123
    [Abstract] [Full Text] [Related]

  • 6. Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin.
    Chen Z, Duan R, Xiao Y, Wei Y, Zhang H, Sun X, Wang S, Cheng Y, Wang X, Tong S, Yao Y, Zhu C, Yang H, Wang Y, Wang Z.
    Nat Commun; 2022 Nov 21; 13(1):7138. PubMed ID: 36414665
    [Abstract] [Full Text] [Related]

  • 7. [Advances in the structure and function of MHETase].
    Yang M, Fan F, He L, Chen J, Wang L, Qiu S, Lyu C, Huang J.
    Sheng Wu Gong Cheng Xue Bao; 2024 Sep 25; 40(9):2812-2830. PubMed ID: 39319709
    [Abstract] [Full Text] [Related]

  • 8. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation.
    Moog D, Schmitt J, Senger J, Zarzycki J, Rexer KH, Linne U, Erb T, Maier UG.
    Microb Cell Fact; 2019 Oct 10; 18(1):171. PubMed ID: 31601227
    [Abstract] [Full Text] [Related]

  • 9. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae.
    Kim JW, Park SB, Tran QG, Cho DH, Choi DY, Lee YJ, Kim HS.
    Microb Cell Fact; 2020 Apr 28; 19(1):97. PubMed ID: 32345276
    [Abstract] [Full Text] [Related]

  • 10. Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs.
    Puspitasari N, Tsai SL, Lee CK.
    Int J Biol Macromol; 2021 Apr 15; 176():157-164. PubMed ID: 33561457
    [Abstract] [Full Text] [Related]

  • 11. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.
    Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ, Choi SY, Lee SY, Kim KJ.
    Nat Commun; 2018 Jan 26; 9(1):382. PubMed ID: 29374183
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases.
    Gao R, Pan H, Lian J.
    Enzyme Microb Technol; 2021 Oct 26; 150():109868. PubMed ID: 34489027
    [Abstract] [Full Text] [Related]

  • 15. Biodegradation of poly(ethylene terephthalate) through PETase surface-display: From function to structure.
    Han W, Zhang J, Chen Q, Xie Y, Zhang M, Qu J, Tan Y, Diao Y, Wang Y, Zhang Y.
    J Hazard Mater; 2024 Jan 05; 461():132632. PubMed ID: 37804764
    [Abstract] [Full Text] [Related]

  • 16. Post-Consumer Poly(ethylene terephthalate) (PET) Depolymerization by Yarrowia lipolytica: A Comparison between Hydrolysis Using Cell-Free Enzymatic Extracts and Microbial Submerged Cultivation.
    Sales JCS, de Castro AM, Ribeiro BD, Coelho MAZ.
    Molecules; 2022 Nov 03; 27(21):. PubMed ID: 36364329
    [Abstract] [Full Text] [Related]

  • 17. Ideonella sakaiensis, PETase, and MHETase: From identification of microbial PET degradation to enzyme characterization.
    Yoshida S, Hiraga K, Taniguchi I, Oda K.
    Methods Enzymol; 2021 Nov 03; 648():187-205. PubMed ID: 33579403
    [Abstract] [Full Text] [Related]

  • 18. Enhanced Extracellular Production of IsPETase in Escherichia coli via Engineering of the pelB Signal Peptide.
    Shi L, Liu H, Gao S, Weng Y, Zhu L.
    J Agric Food Chem; 2021 Feb 24; 69(7):2245-2252. PubMed ID: 33576230
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Enhancing secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis WB600 mediated by the SPamy signal peptide.
    Wang N, Guan F, Lv X, Han D, Zhang Y, Wu N, Xia X, Tian J.
    Lett Appl Microbiol; 2020 Sep 24; 71(3):235-241. PubMed ID: 32394501
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.