These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 35861977
1. Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Identifies Abnormal Calf Muscle-Specific Energetics in Peripheral Artery Disease. Sporkin HL, Patel TR, Betz Y, Mathew R, Schumann CL, Meyer CH, Kramer CM. Circ Cardiovasc Imaging; 2022 Jul; 15(7):e013869. PubMed ID: 35861977 [Abstract] [Full Text] [Related]
2. Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease. Isbell DC, Berr SS, Toledano AY, Epstein FH, Meyer CH, Rogers WJ, Harthun NL, Hagspiel KD, Weltman A, Kramer CM. J Am Coll Cardiol; 2006 Jun 06; 47(11):2289-95. PubMed ID: 16750698 [Abstract] [Full Text] [Related]
3. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, Christopher JM, Kramer CM. JACC Cardiovasc Imaging; 2012 Dec 06; 5(12):1224-30. PubMed ID: 23236972 [Abstract] [Full Text] [Related]
4. Peripheral arterial disease assessment: wall, perfusion, and spectroscopy. Kramer CM. Top Magn Reson Imaging; 2007 Oct 06; 18(5):357-69. PubMed ID: 18025990 [Abstract] [Full Text] [Related]
6. Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging. Zhang JL, Layec G, Hanrahan C, Conlin CC, Hart C, Hu N, Khor L, Mueller M, Lee VS. Am J Physiol Heart Circ Physiol; 2019 Jan 01; 316(1):H201-H211. PubMed ID: 30388024 [Abstract] [Full Text] [Related]
7. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Kogan F, Haris M, Singh A, Cai K, Debrosse C, Nanga RP, Hariharan H, Reddy R. Magn Reson Med; 2014 Jan 01; 71(1):164-72. PubMed ID: 23412909 [Abstract] [Full Text] [Related]
8. High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, Jaschke WR, Schocke MF. J Vasc Surg; 2006 May 01; 43(5):978-86. PubMed ID: 16678693 [Abstract] [Full Text] [Related]
10. Percutaneous intervention in peripheral artery disease improves calf muscle phosphocreatine recovery kinetics: a pilot study. West AM, Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Berr SS, Harthun NL, Weltman AL, Annex BH, Kramer CM. Vasc Med; 2012 Feb 01; 17(1):3-9. PubMed ID: 22363013 [Abstract] [Full Text] [Related]
11. A rapid method for phosphocreatine-weighted imaging in muscle using double saturation power-chemical exchange saturation transfer. Viswanathan M, Kurmi Y, Zu Z. NMR Biomed; 2024 Apr 01; 37(4):e5089. PubMed ID: 38114069 [Abstract] [Full Text] [Related]
12. Dynamic magnetic resonance measurements of calf muscle oxygenation and energy metabolism in peripheral artery disease. Bakermans AJ, Wessel CH, Zheng KH, Groot PFC, Stroes ESG, Nederveen AJ. J Magn Reson Imaging; 2020 Jan 01; 51(1):98-107. PubMed ID: 31218803 [Abstract] [Full Text] [Related]
17. Perfusion has no effect on the in vivo CEST effect from Cr (CrCEST) in skeletal muscle. Kogan F, Stafford RB, Englund EK, Gold GE, Hariharan H, Detre JA, Reddy R. NMR Biomed; 2017 Jan 01; 30(1):. PubMed ID: 27898185 [Abstract] [Full Text] [Related]
18. [MR-Imaging of lower leg muscle perfusion]. Leppek R, Hoos O, Sattler A, Kohle S, Azzam S, Al Haffar I, Keil B, Ricken P, Klose KJ, Alfke H. Herz; 2004 Feb 01; 29(1):32-46. PubMed ID: 14968340 [Abstract] [Full Text] [Related]