These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


302 related items for PubMed ID: 35865955

  • 1. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking.
    Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J.
    Front Pharmacol; 2022; 13():924197. PubMed ID: 35865955
    [Abstract] [Full Text] [Related]

  • 2. The Implementation of TNFRSF Co-Stimulatory Domains in CAR-T Cells for Optimal Functional Activity.
    He Y, Vlaming M, van Meerten T, Bremer E.
    Cancers (Basel); 2022 Jan 08; 14(2):. PubMed ID: 35053463
    [Abstract] [Full Text] [Related]

  • 3. Fc Engineering Approaches to Enhance the Agonism and Effector Functions of an Anti-OX40 Antibody.
    Zhang D, Goldberg MV, Chiu ML.
    J Biol Chem; 2016 Dec 30; 291(53):27134-27146. PubMed ID: 27856634
    [Abstract] [Full Text] [Related]

  • 4. Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy.
    Liu G, Luo P.
    Front Immunol; 2023 Dec 30; 14():1208788. PubMed ID: 37334375
    [Abstract] [Full Text] [Related]

  • 5. CD137/OX40 Bispecific Antibody Induces Potent Antitumor Activity that Is Dependent on Target Coengagement.
    Gaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett KL, Wollerton F, Morrow M, Tuna M, Brewis N.
    Cancer Immunol Res; 2020 Jun 30; 8(6):781-793. PubMed ID: 32273279
    [Abstract] [Full Text] [Related]

  • 6. Agonist redirected checkpoint, PD1-Fc-OX40L, for cancer immunotherapy.
    Fromm G, de Silva S, Johannes K, Patel A, Hornblower JC, Schreiber TH.
    J Immunother Cancer; 2018 Dec 18; 6(1):149. PubMed ID: 30563566
    [Abstract] [Full Text] [Related]

  • 7. FcγRIIB engagement drives agonistic activity of Fc-engineered αOX40 antibody to stimulate human tumor-infiltrating T cells.
    Campos Carrascosa L, van Beek AA, de Ruiter V, Doukas M, Wei J, Fisher TS, Ching K, Yang W, van Loon K, Boor PPC, Rakké YS, Noordam L, Doornebosch P, Grünhagen D, Verhoef K, Polak WG, IJzermans JNM, Ni I, Yeung YA, Salek-Ardakani S, Sprengers D, Kwekkeboom J.
    J Immunother Cancer; 2020 Sep 18; 8(2):. PubMed ID: 32900860
    [Abstract] [Full Text] [Related]

  • 8. Antitumor activities of agonistic anti-TNFR antibodies require differential FcγRIIB coengagement in vivo.
    Li F, Ravetch JV.
    Proc Natl Acad Sci U S A; 2013 Nov 26; 110(48):19501-6. PubMed ID: 24218606
    [Abstract] [Full Text] [Related]

  • 9. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies.
    Li F, Ravetch JV.
    Science; 2011 Aug 19; 333(6045):1030-4. PubMed ID: 21852502
    [Abstract] [Full Text] [Related]

  • 10. Principles of antibody-mediated TNF receptor activation.
    Wajant H.
    Cell Death Differ; 2015 Nov 19; 22(11):1727-41. PubMed ID: 26292758
    [Abstract] [Full Text] [Related]

  • 11. Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities.
    Waight JD, Gombos RB, Wilson NS.
    Hum Antibodies; 2017 Nov 19; 25(3-4):87-109. PubMed ID: 28085016
    [Abstract] [Full Text] [Related]

  • 12. Structural Basis of a Novel Agonistic Anti-OX40 Antibody.
    Zhang J, Jiang X, Gao H, Zhang F, Zhang X, Zhou A, Xu T, Cai H.
    Biomolecules; 2022 Aug 31; 12(9):. PubMed ID: 36139048
    [Abstract] [Full Text] [Related]

  • 13. Epitope and Fc-Mediated Cross-linking, but Not High Affinity, Are Critical for Antitumor Activity of CD137 Agonist Antibody with Reduced Liver Toxicity.
    Ho SK, Xu Z, Thakur A, Fox M, Tan SS, DiGiammarino E, Zhou L, Sho M, Cairns B, Zhao V, Xiong M, Samayoa J, Forsyth CM, Powers DB, Chao DT, Hollenbaugh D, Alvarez HM, Akamatsu Y.
    Mol Cancer Ther; 2020 Apr 31; 19(4):1040-1051. PubMed ID: 31974274
    [Abstract] [Full Text] [Related]

  • 14. Second- and third-generation drugs for immuno-oncology treatment-The more the better?
    Dempke WCM, Fenchel K, Uciechowski P, Dale SP.
    Eur J Cancer; 2017 Mar 31; 74():55-72. PubMed ID: 28335888
    [Abstract] [Full Text] [Related]

  • 15. FcγRIIB as a key determinant of agonistic antibody efficacy.
    White AL, Beers SA, Cragg MS.
    Curr Top Microbiol Immunol; 2014 Mar 31; 382():355-72. PubMed ID: 25116108
    [Abstract] [Full Text] [Related]

  • 16. Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer.
    Richman LP, Vonderheide RH.
    Cancer Immunol Res; 2014 Jan 31; 2(1):19-26. PubMed ID: 24416732
    [Abstract] [Full Text] [Related]

  • 17. Next Generation CD40 Agonistic Antibodies for Cancer Immunotherapy.
    Salomon R, Dahan R.
    Front Immunol; 2022 Jan 31; 13():940674. PubMed ID: 35911742
    [Abstract] [Full Text] [Related]

  • 18. Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcγ receptor engagement.
    Li F, Ravetch JV.
    Proc Natl Acad Sci U S A; 2012 Jul 03; 109(27):10966-71. PubMed ID: 22723355
    [Abstract] [Full Text] [Related]

  • 19. CD40- and CD95-specific antibody single chain-Baff fusion proteins display BaffR-, TACI- and BCMA-restricted agonism.
    Nelke J, Medler J, Weisenberger D, Beilhack A, Wajant H.
    MAbs; 2020 Jul 03; 12(1):1807721. PubMed ID: 32840410
    [Abstract] [Full Text] [Related]

  • 20. Functional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization.
    Zhang D, Armstrong AA, Tam SH, McCarthy SG, Luo J, Gilliland GL, Chiu ML.
    MAbs; 2017 Oct 03; 9(7):1129-1142. PubMed ID: 28758875
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.