These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? Arzani A. J R Soc Interface; 2018 Sep 26; 15(146):. PubMed ID: 30257924 [Abstract] [Full Text] [Related]
24. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance. Campobasso R, Condemi F, Viallon M, Croisille P, Campisi S, Avril S. Cardiovasc Eng Technol; 2018 Dec 26; 9(4):707-722. PubMed ID: 30341731 [Abstract] [Full Text] [Related]
25. Hemodynamic simulation of abdominal aortic aneurysm on idealised models: Investigation of stress parameters during disease progression. Philip NT, Patnaik BSV, Sudhir BJ. Comput Methods Programs Biomed; 2022 Jan 26; 213():106508. PubMed ID: 34800807 [Abstract] [Full Text] [Related]
27. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. Evju Ø, Valen-Sendstad K, Mardal KA. J Biomech; 2013 Nov 15; 46(16):2802-8. PubMed ID: 24099744 [Abstract] [Full Text] [Related]
32. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues. Yi H, Yang Z, Johnson M, Bramlage L, Ludwig B. Phys Fluids (1994); 2022 Oct 15; 34(10):103101. PubMed ID: 36212224 [Abstract] [Full Text] [Related]
33. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms. Suzuki T, Takao H, Suzuki T, Suzuki T, Masuda S, Dahmani C, Watanabe M, Mamori H, Ishibashi T, Yamamoto H, Yamamoto M, Murayama Y. Technol Health Care; 2017 Oct 15; 25(1):37-47. PubMed ID: 27497460 [Abstract] [Full Text] [Related]
34. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. Perktold K, Resch M, Florian H. J Biomech Eng; 1991 Nov 15; 113(4):464-75. PubMed ID: 1762445 [Abstract] [Full Text] [Related]
36. Time dependent non-Newtonian numerical study of the flow field in a realistic model of aortic arch. Del Gaudio C, Morbiducci U, Grigioni M. Int J Artif Organs; 2006 Jul 15; 29(7):709-18. PubMed ID: 16874678 [Abstract] [Full Text] [Related]
37. Effect of rheological models on pulsatile hemodynamics in a multiply afflicted descending human aortic network. Kumar S, Kumar BVR, Rai SK, Shankar O. Comput Methods Biomech Biomed Engin; 2024 Jul 15; 27(1):116-143. PubMed ID: 36708321 [Abstract] [Full Text] [Related]
38. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms. Xiang J, Siddiqui AH, Meng H. J Biomech; 2014 Dec 18; 47(16):3882-90. PubMed ID: 25446264 [Abstract] [Full Text] [Related]
39. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery. Ramiar A, Larimi MM, Ranjbar AA. Acta Bioeng Biomech; 2017 Dec 18; 19(3):27-41. PubMed ID: 29205216 [Abstract] [Full Text] [Related]
40. Experimental flow studies in an elastic Y-model. Mijovic B, Liepsch D. Technol Health Care; 2003 Dec 18; 11(2):115-41. PubMed ID: 12697953 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]